Towards dynamic metabolic flux analysis in CHO cell cultures

被引:96
作者
Ahn, Woo Suk [1 ]
Antoniewicz, Maciek R. [1 ]
机构
[1] Univ Delaware, Dept Chem Engn, Metab Engn & Syst Biol Lab, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
Chinese hamster ovary cells; Fed-batch culture; Flux dynamics; Mammalian cell culture; Metabolic network model; HAMSTER OVARY CELLS; RECOMBINANT PROTEIN THERAPEUTICS; YEAST PYRUVATE-CARBOXYLASE; GLUTAMINE-SYNTHETASE GENE; HIGH-LEVEL EXPRESSION; LACTIC-ACID FORMATION; HYBRIDOMA CELLS; ERYTHROPOIETIN PRODUCTION; MYELOMA CELLS; GLUCOSE-6-PHOSPHATE-DEHYDROGENASE ACTIVITY;
D O I
10.1002/biot.201100052
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Chinese hamster ovary (CHO) cells are the most widely used mammalian cell line for biopharmaceutical production, with a total global market approaching $100 billion per year. In the pharmaceutical industry CHO cells are grown in fed-batch culture, where cellular metabolism is characterized by high glucose and glutamine uptake rates combined with high rates of ammonium and lactate secretion. The metabolism of CHO cells changes dramatically during a fed-batch culture as the cells adapt to a changing environment and transition from exponential growth phase to stationary phase. Thus far, it has been challenging to study metabolic flux dynamics in CHO cell cultures using conventional metabolic flux analysis techniques that were developed for systems at metabolic steady state. In this paper we review progress on flux analysis in CHO cells and techniques for dynamic metabolic flux analysis. Application of these new tools may allow identification of intracellular metabolic bottlenecks at specific stages in CHO cell cultures and eventually lead to novel strategies for improving CHO cell metabolism and optimizing biopharmaceutical process performance.
引用
收藏
页码:61 / 74
页数:14
相关论文
共 139 条
[1]   Effect of Culture Temperature on Erythropoietin Production and Glycosylation in a Perfusion Culture of Recombinant CHO Cells [J].
Ahn, Woo Suk ;
Jeon, Jae-Jin ;
Jeong, Yeong-Ran ;
Lee, Seung Joo ;
Yoon, Sung Kwan .
BIOTECHNOLOGY AND BIOENGINEERING, 2008, 101 (06) :1234-1244
[2]   Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry [J].
Ahn, Woo Suk ;
Antoniewicz, Maciek R. .
METABOLIC ENGINEERING, 2011, 13 (05) :598-609
[3]   Analysis of CHO cells metabolic redistribution in a glutamate-based defined medium in continuous culture [J].
Altamirano, C ;
Illanes, A ;
Casablancas, A ;
Gámez, X ;
Cairó, JJ ;
Gòdia, C .
BIOTECHNOLOGY PROGRESS, 2001, 17 (06) :1032-1041
[4]   Improvement of CHO cell culture medium formulation:: Simultaneous substitution of glucose and glutamine [J].
Altamirano, C ;
Paredes, C ;
Cairó, JJ ;
Gòdia, F .
BIOTECHNOLOGY PROGRESS, 2000, 16 (01) :69-75
[5]   Considerations on the lactate consumption by CHO cells in the presence of galactose [J].
Altamirano, Claudia ;
Illanes, Andres ;
Becerra, Silvana ;
Cairo, Jordi Joan ;
Godia, Francesc .
JOURNAL OF BIOTECHNOLOGY, 2006, 125 (04) :547-556
[6]   THE EFFECT OF AMMONIA ON THE O-LINKED GLYCOSYLATION OF GRANULOCYTE-COLONY-STIMULATING FACTOR PRODUCED BY CHINESE-HAMSTER OVARY CELLS [J].
ANDERSEN, DC ;
GOOCHEE, CF .
BIOTECHNOLOGY AND BIOENGINEERING, 1995, 47 (01) :96-105
[7]   Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis [J].
Antoniewicz, Maciek R. ;
Kelleher, Joanne K. ;
Stephanopoulos, Gregory .
ANALYTICAL CHEMISTRY, 2007, 79 (19) :7554-7559
[8]   Metabolic flux analysis in a nonstationary system:: Fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol [J].
Antoniewicz, Maciek R. ;
Kraynie, David F. ;
Laffend, Lisa A. ;
Gonzalez-Lergier, Joanna ;
Kelleher, Joanne K. ;
Stephanopoulos, Gregory .
METABOLIC ENGINEERING, 2007, 9 (03) :277-292
[9]   Elementary metabolite units (EMU): A novel framework for modeling isotopic distributions [J].
Antoniewicz, Maciek R. ;
Kelleher, Joanne K. ;
Stephanopoulos, Gregory .
METABOLIC ENGINEERING, 2007, 9 (01) :68-86
[10]   Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements [J].
Antoniewicz, Maciek R. ;
Kelleher, Joanne K. ;
Stephanopoulos, Gregory .
METABOLIC ENGINEERING, 2006, 8 (04) :324-337