Real versus measured surface potentials in scanning Kelvin probe microscopy

被引:114
作者
Charrier, Dimitri S. H. [1 ]
Kemerink, Martijn [1 ]
Smalbrugge, Barry E. [2 ]
de Vries, Tjibbe [2 ]
Janssen, Rene A. J. [1 ]
机构
[1] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
[2] Eindhoven Univ Technol, COBRA Res Inst, NL-5600 MB Eindhoven, Netherlands
关键词
scanning Kelvin probe microscopy; electrical characterization; capacitive coupling; numerical modeling; organic transistors;
D O I
10.1021/nn700190t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Noncontact potentiometry or scanning Kelvin probe microscopy (SKPM) is a widely used technique to study charge injection and transport in (in)organic devices by measuring a laterally resolved local potential. This technique suffers from the significant drawback that experimentally obtained curves do not generally reflect the true potential profile in the device due to nonlocal coupling between the probing tip and the device. In this work, we quantitatively explain the experimental SKPM response and by doing so directly link theoretical device models to real observables. In particular, the model quantitatively explains the effects of the tip-sample distance and the dependence on the orientation of the probing tip with respect to the device.
引用
收藏
页码:622 / 626
页数:5
相关论文
共 32 条
[1]   Parametric tip model and force-distance relation for Hamaker constant determination from atomic force microscopy [J].
Argento, C ;
French, RH .
JOURNAL OF APPLIED PHYSICS, 1996, 80 (11) :6081-6090
[2]   Electrostatic forces acting on the tip in atomic force microscopy: Modelization and comparison with analytic expressions [J].
Belaidi, S ;
Girard, P ;
Leveque, G .
JOURNAL OF APPLIED PHYSICS, 1997, 81 (03) :1023-1030
[3]   Finite element simulations of the resolution in electrostatic force microscopy [J].
Belaidi, S ;
Lebon, F ;
Girard, P ;
Leveque, G ;
Pagano, S .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1998, 66 (Suppl 1) :S239-S243
[4]   Electrostatic forces acting on tip and cantilever in atomic force microscopy [J].
Bonaccurso, Elmar ;
Schoenfeld, Friedhelm ;
Butt, Hans-Juergen .
PHYSICAL REVIEW B, 2006, 74 (08)
[5]   Noncontact potentiometry of polymer field-effect transistors [J].
Bürgi, L ;
Sirringhaus, H ;
Friend, RH .
APPLIED PHYSICS LETTERS, 2002, 80 (16) :2913-2915
[6]   A microscopic view of charge transport in polymer transistors [J].
Bürgi, L ;
Richards, T ;
Chiesa, M ;
Friend, RH ;
Sirringhaus, H .
SYNTHETIC METALS, 2004, 146 (03) :297-309
[7]   Time-resolved electrostatic force microscopy of polymer solar cells [J].
Coffey, David C. ;
Ginger, David S. .
NATURE MATERIALS, 2006, 5 (09) :735-740
[8]  
FOSTER AS, 2001, APP PHYS A, V72, P59
[9]   Electrostatic force gradient signal:: resolution enhancement in electrostatic force microscopy and improved Kelvin probe microscopy [J].
Gil, A ;
Colchero, J ;
Gómez-Herrero, J ;
Baró, AM .
NANOTECHNOLOGY, 2003, 14 (02) :332-340
[10]   Two-dimensional, electrostatic finite element study of tip-substrate interactions in electric force microscopy of high density inter-connect structures [J].
Gross, TS ;
Prindle, CM ;
Chamberlin, K ;
bin Kamsah, N ;
Wu, YY .
ULTRAMICROSCOPY, 2001, 87 (03) :147-154