Impact of distal mutations on the network of coupled motions correlated to hydride transfer in dihydrofolate reductase

被引:126
作者
Wong, KF [1 ]
Selzer, T [1 ]
Benkovic, SJ [1 ]
Hammes-Schiffer, S [1 ]
机构
[1] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
关键词
enzyme catalysis; molecular dynamics;
D O I
10.1073/pnas.0408343102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A comprehensive analysis of the network of coupled motions correlated to hydride transfer in dihydrofolate reductase is presented. Hybrid quantum/classical molecular dynamics simulations are combined with a rank correlation analysis method to extract thermally averaged properties that vary along the collective reaction coordinate according to a prescribed target model. Coupled motions correlated to hydride transfer are identified throughout the enzyme. Calculations for wild-type dihydrofolate reductase and a triple mutant, along with the associated single and double mutants, indicate that each enzyme system samples a unique distribution of coupled motions correlated to hydride transfer. These coupled motions provide an explanation for the experimentally measured nonadditivity effects in the hydride transfer rates for these mutants. This analysis illustrates that mutations distal to the active site can introduce nonlocal structural perturbations and significantly impact the catalytic rate by altering the conformational motions of the entire enzyme and the probability of sampling conformations conducive to the catalyzed reaction.
引用
收藏
页码:6807 / 6812
页数:6
相关论文
共 28 条
[1]   Nuclear quantum effects and enzyme dynamics in dihydrofolate reductase catalysis [J].
Agarwal, PK ;
Billeter, SR ;
Hammes-Schiffer, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (12) :3283-3293
[2]   Network of coupled promoting motions in enzyme catalysis [J].
Agarwal, PK ;
Billeter, SR ;
Rajagopalan, PTR ;
Benkovic, SJ ;
Hammes-Schiffer, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (05) :2794-2799
[3]  
Berg J.M., 2015, Oxidative Phosphorylation, Veight
[4]   Hybrid approach for including electronic and nuclear quantum effects in molecular dynamics simulations of hydrogen transfer reactions in enzymes [J].
Billeter, SR ;
Webb, SP ;
Iordanov, T ;
Agarwal, PK ;
Hammes-Schiffer, S .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (15) :6925-6936
[5]   Resistance to human immunodeficiency virus type 1 protease inhibitors [J].
Boden, D ;
Markowitz, M .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1998, 42 (11) :2775-2783
[6]   DYNAMICS OF THE DIHYDROFOLATE-REDUCTASE FOLATE COMPLEX - CATALYTIC SITES AND REGIONS KNOWN TO UNDERGO CONFORMATIONAL CHANGE EXHIBIT DIVERSE DYNAMICAL FEATURES [J].
EPSTEIN, DM ;
BENKOVIC, SJ ;
WRIGHT, PE .
BIOCHEMISTRY, 1995, 34 (35) :11037-11048
[7]   DYNAMICS OF A FLEXIBLE LOOP IN DIHYDROFOLATE-REDUCTASE FROM ESCHERICHIA-COLI AND ITS IMPLICATION FOR CATALYSIS [J].
FALZONE, CJ ;
WRIGHT, PE ;
BENKOVIC, SJ .
BIOCHEMISTRY, 1994, 33 (02) :439-442
[8]   CONSTRUCTION AND EVALUATION OF THE KINETIC SCHEME ASSOCIATED WITH DIHYDROFOLATE-REDUCTASE FROM ESCHERICHIA-COLI [J].
FIERKE, CA ;
JOHNSON, KA ;
BENKOVIC, SJ .
BIOCHEMISTRY, 1987, 26 (13) :4085-4092
[9]   Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase [J].
Garcia-Viloca, M ;
Truhlar, DG ;
Gao, JL .
BIOCHEMISTRY, 2003, 42 (46) :13558-13575
[10]   SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling [J].
Guex, N ;
Peitsch, MC .
ELECTROPHORESIS, 1997, 18 (15) :2714-2723