Demonstration of a Liquid-Tin Anode Solid-Oxide Fuel Cell (LTA-SOFC) Operating from Biodiesel Fuel

被引:51
作者
McPhee, William A. G. [6 ]
Boucher, Matthew [1 ,2 ]
Stuart, James [2 ,3 ]
Parnas, Richard S. [1 ,2 ,4 ]
Koslowske, Mark [6 ]
Tao, Thomas [6 ]
Wilhite, Benjamin A. [1 ,2 ,5 ]
机构
[1] Univ Connecticut, Dept Chem Mat & Biomol Engn, Storrs, CT 06269 USA
[2] Univ Connecticut, Connecticut Biofuels Consortium, Storrs, CT 06269 USA
[3] Univ Connecticut, Dept Chem, Storrs, CT 06269 USA
[4] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA
[5] Univ Connecticut, Connecticut Global Fuel Cell Ctr, Storrs, CT 06269 USA
[6] CellTech Power LCC, Westborough, MA 01581 USA
关键词
EMISSIONS; REACTOR; IMPACT;
D O I
10.1021/ef9003413
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, the authors present the first demonstration of a liquid-tin anode solid-oxide fuel cell (LTA-SOFC) operating on pure biodiesel (B100) prepared via base-catalyzed transesterification of virgin and waste cooking oils. The LTA-SOFC was able to convert the biodiesel to electricity at commercially viable power densities, i.e., greater than 100 mW cm(-2). The peak power for each cell was 3.5 W over an active area of 30 cm(-2), which translates to a power density of 117 mW cm(-2) and current density of 217 mA cm(-2). The peak power densities correspond to similar to 80% fuel use at the liquid-tin anode surface and overall cell efficiencies of >40%. These findings demonstrate the flexibility in operating a solid-oxide fuel cell capable of internal reforming from a blend of petroleum- and biomass-derived diesels for greater resource flexibility. Cells were operated for short times (similar to 4.5 h), owing to the experimental nature of the balance of plant. Results support future efforts in developing an efficient balance-of-plant system for demonstrating long-term (>1000 h) power generation from biodiesel using the LTA-SOFC design.
引用
收藏
页码:5036 / 5041
页数:6
相关论文
共 29 条
[1]  
*ASG REN, 2004, BIOD END US SURV IMP
[2]   Biofuels for Transportation Preface [J].
Boehman, Andre L. ;
McCormick, Robert L. .
FUEL PROCESSING TECHNOLOGY, 2007, 88 (07) :641-641
[3]   Pilot Scale Two-phase Continuous Flow Biodiesel Production via Novel Laminar Flow Reactor-Separator [J].
Boucher, Matthew B. ;
Weed, Clifford ;
Leadbeater, Nicholas E. ;
Wilhite, Benjamin A. ;
Stuart, James D. ;
Parnas, Richard S. .
ENERGY & FUELS, 2009, 23 (5-6) :2750-2756
[4]   Variables affecting homogeneous acid catalyst recoverability and reuse after esterification of concentrated omega-9 polyunsaturated fatty acids in vegetable oil triglycerides [J].
Boucher, Matthew B. ;
Unker, Steven A. ;
Hawley, Kyle R. ;
Wilhite, Benjamin A. ;
Stuart, James D. ;
Parnas, Richard S. .
GREEN CHEMISTRY, 2008, 10 (12) :1331-1336
[5]  
BULLARD K, 2005, NAT BIOD C EXP FORT
[6]   The influence of carbon dioxide on PEM fuel cell anodes [J].
de Bruijn, FA ;
Papageorgopoulos, DC ;
Sitters, EF ;
Janssen, GJM .
JOURNAL OF POWER SOURCES, 2002, 110 (01) :117-124
[7]   An overview of hydrogen production technologies [J].
Holladay, J. D. ;
Hu, J. ;
King, D. L. ;
Wang, Y. .
CATALYSIS TODAY, 2009, 139 (04) :244-260
[8]   High efficiency and low carbon monoxide micro-scale methanol processors [J].
Holladay, JD ;
Jones, EO ;
Dagle, RA ;
Xia, GG ;
Cao, C ;
Wang, Y .
JOURNAL OF POWER SOURCES, 2004, 131 (1-2) :69-72
[9]   Getting serious about biofuels [J].
Koonin, SE .
SCIENCE, 2006, 311 (5760) :435-435
[10]   Biodiesel fuel processor for APU applications [J].
Kraaij, G. J. ;
Specchia, S. ;
Bollito, G. ;
Mutri, L. ;
Wails, D. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (10) :4495-4499