Morphology regulation and carbon coating of LiMnPO4 cathode material for enhanced electrochemical performance

被引:97
作者
Wang, Fei [1 ]
Yang, Jun [1 ]
Gao, Pengfei [1 ]
NuLi, Yanna [1 ]
Wang, Jiulin [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
关键词
Lithium manganese phosphate; Solvothermal method; Nanoplate; Nanorod; Lithium-ion battery; LITHIUM-ION BATTERIES; NANOCOMPOSITE CATHODE; ELECTRODE MATERIALS; LIMPO4; M; FE; MN; CO; LIFEPO4; NI; CONDUCTIVITY;
D O I
10.1016/j.jpowsour.2011.08.090
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Olivine-structured LiMnPO(4) with uniform cluster-like and rod-like morphologies have been synthesized via a simple solvothermal process in water-organic solvent mixtures. The cluster-like LiMnPO(4) microstructures are composed of numerous nanoplates in thickness of ca. 35 nm and width of ca. 400 nm. Carbon is coated on the LiMnPO(4) surfaces by chemical vapor deposition (CVD) from methylbenzene and ball milling with acetylene black, respectively. The hierarchical LiMnPO(4) nanoplates deliver much higher discharge capacity and rate capability than the nanorods due to the larger interfacial area for electrochemical reaction and shorter lithium ion diffusion depth. Furthermore, carbon-coating via CVD approach leads to a significant improvement in the electrochemical performances compared to the ball milling process. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:10258 / 10262
页数:5
相关论文
共 25 条
[1]   Electrochemical performance of nanocomposite LiMnPO4/C cathode materials for lithium batteries [J].
Bakenov, Zhumabay ;
Taniguchi, Izumi .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (01) :75-78
[2]   LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-Ion Battery Cathode [J].
Choi, Daiwon ;
Wang, Donghai ;
Bae, In-Tae ;
Xiao, Jie ;
Nie, Zimin ;
Wang, Wei ;
Viswanathan, Vilayanur V. ;
Lee, Yun Jung ;
Zhang, Ji-Guang ;
Graff, Gordon L. ;
Yang, Zhenguo ;
Liu, Jun .
NANO LETTERS, 2010, 10 (08) :2799-2805
[3]   Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials [J].
Delacourt, C ;
Laffont, L ;
Bouchet, R ;
Wurm, C ;
Leriche, JB ;
Morcrette, M ;
Tarascon, JM ;
Masquelier, C .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) :A913-A921
[4]   One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders [J].
Delacourt, C ;
Poizot, P ;
Morcrette, M ;
Tarascon, JM ;
Masquelier, C .
CHEMISTRY OF MATERIALS, 2004, 16 (01) :93-99
[5]   Lithium battery materials LiMPO4 (M = Mn, Fe, Co, and Ni):: Insights into defect association, transport mechanisms, and doping behavior [J].
Fisher, Craig A. J. ;
Prieto, Veluz M. Hart ;
Islam, M. Saiful .
CHEMISTRY OF MATERIALS, 2008, 20 (18) :5907-5915
[6]   Improving the electrochemical activity of LiMnPO4 via Mn-site co-substitution with Fe and Mg [J].
Hu, Chenglin ;
Yi, Huihua ;
Fang, Haisheng ;
Yang, Bin ;
Yao, Yaochun ;
Ma, Wenhui ;
Dai, Yongnian .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (12) :1784-1787
[7]   Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material [J].
Islam, MS ;
Driscoll, DJ ;
Fisher, CAJ ;
Slater, PR .
CHEMISTRY OF MATERIALS, 2005, 17 (20) :5085-5092
[8]   Carbon Coated LiMnPO4 Nanorods for Lithium Batteries [J].
Kumar, P. Ramesh ;
Venkateswarlu, M. ;
Misra, Manjusri ;
Mohanty, Amar K. ;
Satyanarayana, N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :A227-A230
[9]   Fast synthesis of core-shell LiCoPO4/C nanocomposite via microwave heating and its electrochemical Li intercalation performances [J].
Li, H. H. ;
Jin, J. ;
Wei, J. P. ;
Zhou, Z. ;
Yan, J. .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (01) :95-98
[10]   Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials [J].
Morgan, D ;
Van der Ven, A ;
Ceder, G .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (02) :A30-A32