Long-term cyclability of nanostructured LiFePO4

被引:174
作者
Prosini, PP
Carewska, M
Scaccia, S
Wisniewski, P
Pasquali, M
机构
[1] ENEA, IDROCOMB, CR Casaccia, I-00060 Rome, Italy
[2] Univ Roma La Sapienza, Fac Ingn, Dipartimento ICMMPM, Rome, Italy
关键词
lithium iron phosphate; cyclability; lithium battery;
D O I
10.1016/S0013-4686(03)00606-6
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Amorphous LiFePO4 was obtained by lithiation of FePO4 synthesized by spontaneous precipitation from equimolar aqueous solutions of Fe(NH4)(2)(SO4)(2).6H(2)O and NH4H2PO4, using hydrogen peroxide as oxidizing agent. Nano-crystalline LiFePO4 was obtained by heating amorphous nano-sized LiFePO4 for different periods of time. The materials were characterized by TG, DTA, X-ray powder diffraction, scanning electron microscopy (SEM) and BET. All materials showed very good electrochemical performance in terms of energy and power density. Upon cycling, a capacity fading affected the materials, thus reducing the electrochemical performance. Nevertheless, the fading decreased upon cycling and after the 200th cycle the cell was able to cycle for more than 500 cycles without further fading. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4205 / 4211
页数:7
相关论文
共 13 条
  • [1] Thermal stability of LiFePO4-based cathodes
    Andersson, AS
    Thomas, JO
    Kalska, B
    Häggström, L
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2000, 3 (02) : 66 - 68
  • [2] The source of first-cycle capacity loss in LiFePO4
    Andersson, AS
    Thomas, JO
    [J]. JOURNAL OF POWER SOURCES, 2001, 97-8 : 498 - 502
  • [3] Lithium extraction/insertion in LiFePO4:: an X-ray diffraction and Mossbauer spectroscopy study
    Andersson, AS
    Kalska, B
    Häggström, L
    Thomas, JO
    [J]. SOLID STATE IONICS, 2000, 130 (1-2) : 41 - 52
  • [4] A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode
    Croce, F
    D'Epifanio, A
    Hassoun, J
    Deptula, A
    Olczac, T
    Scrosati, B
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (03) : A47 - A50
  • [5] Cathodes for lithium-ion batteries: Some comparisons
    Goodenough, JB
    Manivannan, V
    [J]. DENKI KAGAKU, 1998, 66 (12): : 1173 - 1181
  • [6] Approaching theoretical capacity of LiFePO4 at room temperature at high rates
    Huang, H
    Yin, SC
    Nazar, LF
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (10) : A170 - A172
  • [7] Phospho-olivines as positive-electrode materials for rechargeable lithium batteries
    Padhi, AK
    Nanjundaswamy, KS
    Goodenough, JB
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (04) : 1188 - 1194
  • [8] Determination of the chemical diffusion coefficient of lithium in LiFePO4
    Prosini, PP
    Lisi, M
    Zane, D
    Pasquali, M
    [J]. SOLID STATE IONICS, 2002, 148 (1-2) : 45 - 51
  • [9] A new synthetic route for preparing LiFePO4 with enhanced electrochemical performance
    Prosini, PP
    Carewska, M
    Scaccia, S
    Wisniewski, P
    Passerini, S
    Pasquali, M
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (07) : A886 - A890
  • [10] Improved electrochemical performance of a LiFePO4-based composite cathode
    Prosini, PP
    Zane, D
    Pasquali, M
    [J]. ELECTROCHIMICA ACTA, 2001, 46 (23) : 3517 - 3523