Identification of Novel Type 1 Diabetes Candidate Genes by Integrating Genome-Wide Association Data, Protein-Protein Interactions, and Human Pancreatic Islet Gene Expression

被引:88
作者
Bergholdt, Regine [2 ]
Brorsson, Caroline [1 ]
Palleja, Albert [3 ]
Berchtold, Lukas A. [2 ]
Floyel, Tina [1 ]
Bang-Berthelsen, Claus Heiner [1 ]
Frederiksen, Klaus Stensgaard [4 ]
Jensen, Lars Juhl [3 ]
Storling, Joachim [1 ]
Pociot, Flemming [1 ,5 ]
机构
[1] Glostrup Univ Hosp, Glostrup Res Inst, Glostrup, Denmark
[2] Hagedorn Res Inst, Gentofte, Denmark
[3] Univ Copenhagen, Novo Nordisk Fdn, Ctr Prot Res, Copenhagen, Denmark
[4] Novo Nordisk AS, DK-2880 Bagsvaerd, Denmark
[5] Lund Univ, Malmo Univ Hosp, Clin Res Ctr, Malmo, Sweden
基金
美国国家卫生研究院;
关键词
NETWORK-BASED ANALYSIS; BETA-CELL FUNCTION; INNATE IMMUNITY; NOD MICE; SUSCEPTIBILITY; CYTOTOXICITY; ACTIVATION; CYTOKINES; PATHWAY; TOOL;
D O I
10.2337/db11-1263
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Genome-wide association studies (GWAS) have heralded a new era in susceptibility locus discovery in complex diseases. For type 1 diabetes, >40 susceptibility loci have been discovered. However, GWAS do not inevitably lead to identification of the gene or genes in a given locus associated with disease, and they do not typically inform the broader context in which the disease genes operate. Here, we integrated type 1 diabetes GWAS data with protein-protein interactions to construct biological networks of relevance for disease. A total of 17 networks were identified. To prioritize and substantiate these networks, we performed expressional profiling in human pancreatic islets exposed to proinflammatory cytokines. Three networks were significantly enriched for cytokine-regulated genes and, thus, likely to play an important role for type I diabetes in pancreatic islets. Eight of the regulated genes (CD83, IFNGR1, IL17RD, TRAF3IP2, IL27RA, PLCG2, MYO1B, and CXCR7) in these networks also harbored single nucleotide polymorphisms nominally associated with type 1 diabetes. Finally, the expression and cytokine regulation of these new candidate genes were confirmed in insulin-secreting INS-1 beta-cells. Our results provide novel insight to the mechanisms behind type 1 diabetes pathogenesis and, thus, may provide the basis for the design of novel treatment strategies. Diabetes 61:954-962, 2012
引用
收藏
页码:954 / 962
页数:9
相关论文
共 50 条
[1]   Synergistic Reversal of Type 1 Diabetes in NOD Mice With Anti-CD3 and Interleuldn-1 Blockade [J].
Ablamunits, Vitaly ;
Henegariu, Octavian ;
Hansen, Jakob Bondo ;
Opare-Addo, Lynn ;
Preston-Hurlburt, Paula ;
Santamaria, Pere ;
Mandrup-Poulsen, Thomas ;
Herold, Kevan C. .
DIABETES, 2012, 61 (01) :145-154
[2]   FatiGO+:: a functional profiling tool for genomic data.: Integration of functional annotation, regulatory motifs and interaction data with microarray experiments [J].
Al-Shahrour, Fatima ;
Minguez, Pablo ;
Tarraga, Joaquin ;
Medina, Ignacio ;
Alloza, Eva ;
Montaner, David ;
Dopazo, Joaquin .
NUCLEIC ACIDS RESEARCH, 2007, 35 :W91-W96
[3]   Peripheral and Islet Interleukin-17 Pathway Activation Characterizes Human Autoimmune Diabetes and Promotes Cytokine-Mediated β-Cell Death [J].
Arif, Sefina ;
Moore, Fabrice ;
Marks, Katherine ;
Bouckenooghe, Thomas ;
Dayan, Colin M. ;
Planas, Raquel ;
Vives-Pi, Marta ;
Powrie, Jake ;
Tree, Timothy ;
Marchetti, Piero ;
Huang, Guo Cai ;
Gurzov, Esteban N. ;
Pujol-Borrell, Ricardo ;
Eizirik, Decio L. ;
Peakman, Mark .
DIABETES, 2011, 60 (08) :2112-2119
[4]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[5]   Pathway and network-based analysis of genome-wide association studies in multiple sclerosis [J].
Baranzini, Sergio E. ;
Galwey, Nicholas W. ;
Wang, Joanne ;
Khankhanian, Pouya ;
Lindberg, Raija ;
Pelletier, Daniel ;
Wu, Wen ;
Uitdehaag, Bernard M. J. ;
Kappos, Ludwig ;
Polman, Chris H. ;
Matthews, Paul M. ;
Hauser, Stephen L. ;
Gibson, Rachel A. ;
Oksenberg, Jorge R. ;
Barnes, Michael R. .
HUMAN MOLECULAR GENETICS, 2009, 18 (11) :2078-2090
[6]   Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes [J].
Barrett, Jeffrey C. ;
Clayton, David G. ;
Concannon, Patrick ;
Akolkar, Beena ;
Cooper, Jason D. ;
Erlich, Henry A. ;
Julier, Cecile ;
Morahan, Grant ;
Nerup, Jorn ;
Nierras, Concepcion ;
Plagnol, Vincent ;
Pociot, Flemming ;
Schuilenburg, Helen ;
Smyth, Deborah J. ;
Stevens, Helen ;
Todd, John A. ;
Walker, Neil M. ;
Rich, Stephen S. .
NATURE GENETICS, 2009, 41 (06) :703-707
[7]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[8]   Transcriptional profiling of type 1 diabetes genes on chromosome 21 in a rat beta-cell line and human pancreatic islets [J].
Bergholdt, R. ;
Karlsen, A. E. ;
Hagedorn, P. H. ;
Aalund, M. ;
Nielsen, J. H. ;
Kruhoffer, M. ;
Orntoft, T. ;
Wang, H. ;
Wollheim, C. B. ;
Nerup, J. ;
Pociot, F. .
GENES AND IMMUNITY, 2007, 8 (03) :232-238
[9]   Expression Profiling of Human Genetic and Protein Interaction Networks in Type 1 Diabetes [J].
Bergholdt, Regine ;
Brorsson, Caroline ;
Lage, Kasper ;
Nielsen, Jens Hoiriis ;
Brunak, Soren ;
Pociot, Flemming .
PLOS ONE, 2009, 4 (07)
[10]  
Bergholdt R, 2009, DAN MED BULL, V56, P1