A cellular-automata model of flow in ant trails: non-monotonic variation of speed with density

被引:84
作者
Chowdhury, D [1 ]
Guttal, V
Nishinari, K
Schadschneider, A
机构
[1] Indian Inst Technol, Dept Phys, Kanpur 208016, Uttar Pradesh, India
[2] Univ Cologne, Inst Theoret Phys, D-50923 Cologne, Germany
[3] Ryukoku Univ, Dept Appl Math & Informat, Shiga 5202194, Japan
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 41期
关键词
D O I
10.1088/0305-4470/35/41/103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Generically, in models of driven interacting particles, the average speed of the particles decreases monotonically with increasing density. We propose a counterexample, motivated by the motion of ants in a trail, where the average speed of the particles varies non-monotonically with their density because of the coupling of their dynamics with another dynamical variable. These results, in principle, can be tested experimentally.
引用
收藏
页码:L573 / L577
页数:5
相关论文
共 21 条
[11]  
Marro J., 1999, NONEQUILIBRIUM PHASE
[12]  
NAGEL K, 1992, J PHYS I, V2, P2221, DOI 10.1051/jp1:1992277
[13]   Jamming transition in a homogeneous one-dimensional system: The bus route model [J].
O'Loan, OJ ;
Evans, MR ;
Cates, ME .
PHYSICAL REVIEW E, 1998, 58 (02) :1404-1418
[14]   The Nagel-Schreckenberg model revisited [J].
Schadschneider, A .
EUROPEAN PHYSICAL JOURNAL B, 1999, 10 (03) :573-582
[15]   CELLULAR-AUTOMATON MODELS AND TRAFFIC FLOW [J].
SCHADSCHNEIDER, A ;
SCHRECKENBERG, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (15) :L679-L683
[16]  
Schmittmann B, 1995, PHASE TRANSITIONS CR, V17
[17]   DISCRETE STOCHASTIC-MODELS FOR TRAFFIC FLOW [J].
SCHRECKENBERG, M ;
SCHADSCHNEIDER, A ;
NAGEL, K ;
ITO, N .
PHYSICAL REVIEW E, 1995, 51 (04) :2939-2949
[18]  
SCHUTZ GM, 2000, PHASE TRANSITIONS CR
[19]  
Wilson E.O., 1971, INSECT SOC
[20]  
Wolfram S., 1994, Cellular Automata and Complexity: Collected Papers