Electric-field control of the band gap and Fermi energy in graphene multilayers by top and back gates

被引:120
作者
Avetisyan, A. A. [1 ,2 ]
Partoens, B. [1 ]
Peeters, F. M. [1 ,3 ]
机构
[1] Univ Antwerp, Dept Fys, B-2020 Antwerp, Belgium
[2] Yerevan State Univ, Dept Phys, Yerevan 0025, Armenia
[3] Univ Fed Ceara, Dept Fis, BR-60455900 Fortaleza, Ceara, Brazil
关键词
electronic density of states; energy gap; Fermi level; graphene; multilayers; SCF calculations; tight-binding calculations;
D O I
10.1103/PhysRevB.80.195401
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It is known that a perpendicular electric field applied to multilayers of graphene modifies the electronic structure near the K point and may induce an energy gap in the electronic spectrum which is tunable by the gate voltage. Here we consider a system of graphene multilayers in the presence of a positively charged top and a negatively charged back gate to control independently the density of electrons on the graphene layers and the Fermi energy of the system. The band structure of three- and four-layer graphene systems in the presence of the top and back gates is obtained using a tight-binding approach. A self-consistent Hartree approximation is used to calculate the induced charges on the different graphene layers. We predict that for opposite and equal charges on the top and bottom layers an energy gap is opened at the Fermi level. For an even number of layers this gap is larger than in the case of an odd number of graphene layers. We find that the circular asymmetry of the spectrum, which is a consequence of the trigonal warping, changes the size of the induced electronic gap, even when the total density of the induced electrons on the graphene layers is low.
引用
收藏
页数:11
相关论文
共 18 条
[1]   Electric field tuning of the band gap in graphene multilayers [J].
Avetisyan, A. A. ;
Partoens, B. ;
Peeters, F. M. .
PHYSICAL REVIEW B, 2009, 79 (03)
[2]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[3]   Graphene-based liquid crystal device [J].
Blake, Peter ;
Brimicombe, Paul D. ;
Nair, Rahul R. ;
Booth, Tim J. ;
Jiang, Da ;
Schedin, Fred ;
Ponomarenko, Leonid A. ;
Morozov, Sergey V. ;
Gleeson, Helen F. ;
Hill, Ernie W. ;
Geim, Andre K. ;
Novoselov, Kostya S. .
NANO LETTERS, 2008, 8 (06) :1704-1708
[4]   Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect [J].
Castro, Eduardo V. ;
Novoselov, K. S. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Dos Santos, J. M. B. Lopes ;
Nilsson, Johan ;
Guinea, F. ;
Geim, A. K. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (21)
[5]  
Craciun MF, 2009, NAT NANOTECHNOL, V4, P383, DOI [10.1038/NNANO.2009.89, 10.1038/nnano.2009.89]
[6]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[7]   Coulomb oscillations in three-layer graphene nanostructures [J].
Guettinger, J. ;
Stampfer, C. ;
Molitor, F. ;
Graf, D. ;
Ihn, T. ;
Ensslin, K. .
NEW JOURNAL OF PHYSICS, 2008, 10
[8]   Gate-induced interlayer asymmetry in ABA-stacked trilayer graphene [J].
Koshino, Mikito ;
McCann, Edward .
PHYSICAL REVIEW B, 2009, 79 (12)
[9]   Phase analysis of quantum oscillations in graphite [J].
Luk'yanchuk, IA ;
Kopelevich, Y .
PHYSICAL REVIEW LETTERS, 2004, 93 (16) :166402-1
[10]   Dirac and normal fermions in graphite and graphene: Implications of the quantum hall effect [J].
Luk'yanchuk, Igor A. ;
Kopelevich, Yakov .
PHYSICAL REVIEW LETTERS, 2006, 97 (25)