Generalized ensemble and tempering simulations: A unified view

被引:80
作者
Nadler, Walter
Hansmann, Ulrich H. E.
机构
[1] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA
[2] Forschungszentrum Julich, John Von Neuman Inst Comp, D-52425 Julich, Germany
来源
PHYSICAL REVIEW E | 2007年 / 75卷 / 02期
关键词
D O I
10.1103/PhysRevE.75.026109
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
From the underlying master equations we derive one-dimensional stochastic processes that describe generalized ensemble simulations as well as tempering (simulated and parallel) simulations. The representations obtained are either in the form of a one-dimensional Fokker-Planck equation or a hopping process on a one-dimensional chain. In particular, we discuss the conditions under which these representations are valid approximate Markovian descriptions of the random walk in order parameter or control parameter space. They allow a unified discussion of the stationary distribution on, as well as of the stationary flow across, each space. We demonstrate that optimizing the flow is equivalent to minimizing the first passage time for crossing the space and discuss the consequences of our results for optimizing simulations. Finally, we point out the limitations of these representations under conditions of broken ergodicity.
引用
收藏
页数:10
相关论文
共 34 条
[1]   Dynamics of the Wang-Landau algorithm and complexity of rare events for the three-dimensional bimodal Ising spin glass [J].
Alder, S ;
Trebst, S ;
Hartmann, AK ;
Troyer, M .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[2]   MULTICANONICAL ALGORITHMS FOR 1ST ORDER PHASE-TRANSITIONS [J].
BERG, BA ;
NEUHAUS, T .
PHYSICS LETTERS B, 1991, 267 (02) :249-253
[3]   Multicanonical recursions [J].
Berg, BA .
JOURNAL OF STATISTICAL PHYSICS, 1996, 82 (1-2) :323-342
[4]   A geometric interpretation of the Metropolis-Hastings algorithm [J].
Billera, LJ ;
Diaconis, P .
STATISTICAL SCIENCE, 2001, 16 (04) :335-339
[5]   Performance limitations of flat-histogram methods -: art. no. 097201 [J].
Dayal, P ;
Trebst, S ;
Wessel, S ;
Würtz, D ;
Troyer, M ;
Sabhapandit, S ;
Coppersmith, SN .
PHYSICAL REVIEW LETTERS, 2004, 92 (09) :097201-1
[6]   Numerical results for the metropolis algorithm [J].
Diaconis, P ;
Neuberger, JW .
EXPERIMENTAL MATHEMATICS, 2004, 13 (02) :207-213
[7]   What do we know about the metropolis algorithm? [J].
Diaconis, P ;
Saloff-Coste, L .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1998, 57 (01) :20-36
[8]   The cutoff phenomenon in finite Markov chains [J].
Diaconis, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (04) :1659-1664
[9]  
Gardiner C., 1985, Handbook of stochastic methods, V3
[10]   ANNEALING MARKOV-CHAIN MONTE-CARLO WITH APPLICATIONS TO ANCESTRAL INFERENCE [J].
GEYER, CJ ;
THOMPSON, EA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (431) :909-920