Interpolation error estimates of a modified 8-node serendipity finite element

被引:12
作者
Zhang, J [1 ]
Kikuchi, F [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
关键词
Mathematics Subject Classification (1991): 65N30, 65N12;
D O I
10.1007/s002110000104
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Interpolation error estimates for a modified 8-node serendipity finite element are derived in both regular and degenerate cases, the latter of which includes the case when the element is of triangular shape. For u is an element of W-3,W-p (K) defined over a quadrilateral K, the error for the interpolant Pi(K)u is estimated as \u - Pi(K)u\(W)alpha,p((K)) less than or equal to Ch(K)(3-alpha)\u\(W)3,p((K)) (alpha = 0, 1), where 1 less than or equal to p less than or equal to +infinity in the regular case and 1 less than or equal to p < 3 in the degenerate case, respectively. Thus, the obtained error estimate in the degenerate case is of the same quality as in the regular case at least for 1 less than or equal to p < 3. Results for some related elements are also given.
引用
收藏
页码:503 / 524
页数:22
相关论文
共 10 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
BRENNER SC, 1994, MATH THEORY FINITE E, pCH4
[3]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[4]  
JAMET P, 1976, ESTIMATIONS ERREUR I, P55
[5]   Modification of the 8-node serendipity element [J].
Kikuchi, F ;
Okabe, M ;
Fujio, H .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 179 (1-2) :91-109
[6]   EXPLICIT EXPRESSIONS OF SHAPE FUNCTIONS FOR THE MODIFIED 8-NODE SERENDIPITY ELEMENT [J].
KIKUCHI, F .
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1994, 10 (09) :711-716
[7]   8 NODES OR 9 [J].
MACNEAL, RH ;
HARDER, RL .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1992, 33 (05) :1049-1058
[8]  
MacNeal RH., 1994, FINITE ELEMENTS THEI
[9]  
Strang G., 1973, ANAL FINITE ELEMENT, P318
[10]   THE INTERPOLATION THEOREM FOR NARROW QUADRILATERAL ISOPARAMETRIC FINITE-ELEMENTS [J].
ZENISEK, A ;
VANMAELE, M .
NUMERISCHE MATHEMATIK, 1995, 72 (01) :123-141