CMAS corrosion of EB PVD TBCs: Identifying the minimum level to initiate damage

被引:111
作者
Wellman, R. [1 ]
Whitman, G. [1 ]
Nicholls, J. R. [1 ]
机构
[1] Cranfield Univ, Natl High Temp Surface Engn Ctr, Cranfield MK43 0AL, Beds, England
基金
英国工程与自然科学研究理事会;
关键词
EB PVD TBC; CMAS; Degradation; Erosion; THERMAL BARRIER COATINGS; DELAMINATION; MECHANISMS; SUBJECT;
D O I
10.1016/j.ijrmhm.2009.07.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Over the last decade a significant amount of research has been conducted into the durability of thermal barrier coatings (TBCs) focusing mainly on issues of oxidation, erosion and foreign object damage (FOD). However, as the performance and durability of TBCs has improved the temperatures at which they operate has increased. This increase in temperature has resulted in another lifing issue for EB PVD TBCs, namely that of CMAS attack. Calcium-magnesium-alumino-silicate (CMAS) attack occurs when atmospheric dust that has deposited on the surface of turbine blades melts and wicks into the columns of the TBC. This occurs at temperatures above 1240-1260 degrees C and results in the degradation of the columnar microstructure of the TBCs. Due to the fact that TBCs operate in a temperature gradient CMAS only infiltrates part of the coating before solidifying. There are a number of issues associated with CMAS attack, both chemical and mechanical. From a chemical point of view CMAS attack of electron beam (EB) physical vapour deposited (PVD) TBCs can be considered as a form of corrosion; when there is a lot of excess CMAS on the surface of a coated component Yttria diffuses out of the TBC into the molten CMAS resulting in a t' to monoclinic phase transformation in the yttria stabilised zirconia (YSZ), CMAS attack also results in localised melting and subsequent re-precipitation of the coating resulting in a loss of the defined columnar microstructure. While from a mechanical point of view the CMAS, once re-solidified, reduces the strain compliance of the EB PVD and can result in spallation of the TBC on cooling. Furthermore, current studies have indicated that small amount of CMAS infiltration significantly increases the erosion rate of EB PVD TBCs. This paper covers various aspects of CMAS attack of EB PVD TBCs, specifically looking at minimum levels of CMAS required to initiate damage, as well as investigating it from an erosion-corrosion perspective. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:124 / 132
页数:9
相关论文
共 15 条
[1]   Role of environmental deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings [J].
Borom, MP ;
Johnson, CA ;
Peluso, LA .
SURFACE & COATINGS TECHNOLOGY, 1996, 86 (1-3) :116-126
[2]   Calcium-magnesium-alumina-silicate (CMAS) delamination mechanisms in EB-PVD thermal barrier coatings [J].
Chen, X .
SURFACE & COATINGS TECHNOLOGY, 2006, 200 (11) :3418-3427
[3]  
DIXON J, 1989, SOIL SOC AM BOOK SER
[4]   CMAS degradation of environmental barrier coatings [J].
Grant, Kendra M. ;
Kramer, Stephan ;
Lofvander, Jan P. A. ;
Levi, Carlos G. .
SURFACE & COATINGS TECHNOLOGY, 2007, 202 (4-7) :653-657
[5]   DEPOSITION OF VOLCANIC MATERIALS IN THE HOT SECTIONS OF 2 GAS-TURBINE ENGINES [J].
KIM, J ;
DUNN, MG ;
BARAN, AJ ;
WADE, DP ;
TREMBA, EL .
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 1993, 115 (03) :641-651
[6]   Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration [J].
Kraemer, S. ;
Faulhaber, S. ;
Chambers, M. ;
Clarke, D. R. ;
Levi, C. G. ;
Hutchinson, J. W. ;
Evans, A. G. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 490 (1-2) :26-35
[7]   Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts [J].
Kraemer, Stephan ;
Yang, James ;
Levi, Carlos G. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2008, 91 (02) :576-583
[8]   Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS) deposits [J].
Kramer, Stephan ;
Yang, James ;
Levi, Carlos G. ;
Johnson, Curtis A. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2006, 89 (10) :3167-3175
[9]  
LEYEN P, 1999, INFLUENCE EB PVD TBC
[10]   Volatile heavy metal mobility in silicate liquids: Implications for volcanic degassing and eruption prediction [J].
MacKenzie, Jason M. ;
Canil, Dante .
EARTH AND PLANETARY SCIENCE LETTERS, 2008, 269 (3-4) :487-495