Recombinant canarypox virus vaccine co-expressing genes encoding the VP2 and VP5 outer capsid proteins of bluetongue virus induces high level protection in sheep

被引:77
作者
Boone, Josh D.
Balasuriya, Udeni B.
Karaca, Kemal
Audonnet, Jean-Christophe
Yao, Jiansheng
He, Ling
Nordgren, Robert
Monaco, Federica
Savini, Giovanni
Gardner, Ian A.
MacLachlan, N. James [1 ]
机构
[1] Univ Calif Davis, Sch Vet Med, Equine Viral Dis Lab, Dept Pathol Microbiol & Immunol, Davis, CA 95616 USA
[2] Merital Ltd, Athens, GA 30601 USA
[3] Merial SAS, Biol Discovery Res, F-69007 Lyon, France
[4] Sanofi Pasteur, Toronto, ON, Canada
[5] Ist Zooprofilatt Sperimentale Abruzzo & Molise G, I-64100 Teramo, Italy
[6] Univ Calif Davis, Sch Vet Med, Dept Med & Epidemiol, Davis, CA 95616 USA
关键词
bluetongue; canarypox virus; vaccine; sheep;
D O I
10.1016/j.vaccine.2006.08.025
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
We describe the development and preliminary characterization of a recombinant canarypox virus vectored vaccine for protective immunization of ruminants against bluetongue virus (BTV) infection. Sheep (n = 6) immunized with recombinant canarypox virus vector (BTV-CP) co-expressing synthetic genes encoding the two outer capsid proteins (VP2 and VP5) of BTV serotype 17 (BTV-17) developed high titers (40-160) of virus-specific neutralizing antibodies and were resistant to challenge with a field strain of BTV-17. In contrast, sheep (11 = 5) immunized with a commercial recombinant canarypox virus vector expressing the E and preM genes of West Nile virus were seronegative to BTV and developed pyrexia, lymphopenia, and extended, high-titered viremias following challenge exposure to the field strain of BTV-17. These data confirm that the BTV-CP vaccine may be useful for the protective immunization of ruminants against bluetongue, and it may avoid the problems inherent to live-attenuated (LA) BTV vaccines. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:672 / 678
页数:7
相关论文
共 43 条
[11]  
Dungu B, 2004, Vet Ital, V40, P616
[12]   Active circulation of bluetongue vaccine virus serotype-2 among unvaccinated cattle in central Italy [J].
Ferrari, G ;
De Liberato, C ;
Scavia, G ;
Lorenzetti, R ;
Zini, M ;
Farina, F ;
Magliano, A ;
Cardeti, G ;
Scholl, F ;
Guidoni, M ;
Scicluna, MT ;
Amaddeo, D ;
Scaramozzino, P ;
Autorino, GL .
PREVENTIVE VETERINARY MEDICINE, 2005, 68 (2-4) :103-113
[13]   The effects of vaccination of Merino ewes with an attenuated Australian bluetongue virus serotype 23 at different stages of gestation [J].
Flanagan, M ;
Johnson, SJ .
AUSTRALIAN VETERINARY JOURNAL, 1995, 72 (12) :455-457
[14]   THE EPIDEMIOLOGY OF BLUETONGUE [J].
GIBBS, EPJ ;
GREINER, EC .
COMPARATIVE IMMUNOLOGY MICROBIOLOGY AND INFECTIOUS DISEASES, 1994, 17 (3-4) :207-220
[15]  
Gómez-Tejedor C, 2004, VETER ITAL SER, V40, P57
[16]   ISOLATION OF A CAPSID PROTEIN OF BLUETONGUE VIRUS THAT INDUCES A PROTECTIVE IMMUNE-RESPONSE IN SHEEP [J].
HUISMANS, H ;
VANDERWALT, NT ;
CLOETE, M ;
ERASMUS, BJ .
VIROLOGY, 1987, 157 (01) :172-179
[17]   Antibody responses and protective immunity to recombinant vaccinia virus-expressed bluetongue virus antigens [J].
Lobato, ZIP ;
Coupar, BEH ;
Gray, CP ;
Lunt, R ;
Andrew, ME .
VETERINARY IMMUNOLOGY AND IMMUNOPATHOLOGY, 1997, 59 (3-4) :293-309
[18]  
MACLACHLAN N J, 1985, P79
[19]  
MACLACHLAN NJ, 1987, AM J VET RES, V48, P1031
[20]   ASSIGNMENT OF THE GENOME SEGMENTS OF BLUETONGUE VIRUS TYPE-1 TO THE PROTEINS WHICH THEY ENCODE [J].
MERTENS, PPC ;
BROWN, F ;
SANGAR, DV .
VIROLOGY, 1984, 135 (01) :207-217