Anaerobic Oxidation of Methane: Progress with an Unknown Process

被引:1237
作者
Knittel, Katrin [1 ]
Boetius, Antje [1 ]
机构
[1] Max Planck Inst Marine Microbiol, D-28359 Bremen, Germany
关键词
Archaea; sulfate-reducing bacteria; ANME; microbial consortia; mcrA gene; COENZYME-M REDUCTASE; SULFATE-REDUCING BACTERIA; MOSBY MUD VOLCANO; A MCRA GENES; MICROBIAL COMMUNITIES; MARINE-SEDIMENTS; HYDROTHERMAL SEDIMENTS; OXIDIZING ARCHAEA; IN-VITRO; BIOGEOCHEMICAL PROCESSES;
D O I
10.1146/annurev.micro.61.080706.093130
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Methane is the most abundant hydrocarbon in the atmosphere, and it is in important greenhouse gas, which has so far contributed in estimated 20% of postindustrial global warming. A great deal of biogeochemical research has focused on the causes and effects of the variation in global fluxes of methane throughout earth's history, but the underlying microbial processes and their key agents remain poorly understood. This is a disturbing knowledge gap because 85% of the annual global methane production and about 60% of its consumption are based on microbial processes. Only three key functional groups of microorganisms of limited diversity regulate the fluxes of methane on earth, namely the aerobic methanotrophic bacteria, the methanogenic archaea, and their close relatives, the anaerobic methanotrophic archaea (ANME). The ANME represent special lines of descent within the Euryarchaeota and appear to gain energy exclusively from the anaerobic oxidation of methane (AOM), with sulfate as the final electron acceptor according to the net reaction: CH4 + SO42- -> HCO3- + HS- + H2O. This review summarizes what is known and unknown about AOM oil earth and its key catalysts, the ANME clades and their bacterial partners.
引用
收藏
页码:311 / 334
页数:24
相关论文
共 119 条
[21]   Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor [J].
Dickens, GR .
EARTH AND PLANETARY SCIENCE LETTERS, 2003, 213 (3-4) :169-183
[22]   Evidence of intense archaeal and bacterial methanotrophic activity in the black sea water column [J].
Durisch-Kaiser, E ;
Klauser, L ;
Wehrli, B ;
Schubert, C .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (12) :8099-8106
[23]   Cooccurrence of aerobic and anaerobic methane oxidation in the water column of lake plusssee [J].
Eller, G ;
Känel, LK ;
Krüger, M .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (12) :8925-8928
[24]   Anaerobic methane oxidation associated with marine gas hydrates:: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids [J].
Elvert, M ;
Suess, E ;
Whiticar, MJ .
NATURWISSENSCHAFTEN, 1999, 86 (06) :295-300
[25]   Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea [J].
Ettwig, Katharina F. ;
Shima, Seigo ;
van de Pas-Schoonen, Katinka T. ;
Kahnt, Joerg ;
Medema, Marnix H. ;
op den Camp, Huub J. M. ;
Jetten, Mike S. M. ;
Strous, Marc .
ENVIRONMENTAL MICROBIOLOGY, 2008, 10 (11) :3164-3173
[26]   Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor [J].
Girguis, PR ;
Cozen, AE ;
DeLong, EF .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (07) :3725-3733
[27]   Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms [J].
Gorby, Yuri A. ;
Yanina, Svetlana ;
McLean, Jeffrey S. ;
Rosso, Kevin M. ;
Moyles, Dianne ;
Dohnalkova, Alice ;
Beveridge, Terry J. ;
Chang, In Seop ;
Kim, Byung Hong ;
Kim, Kyung Shik ;
Culley, David E. ;
Reed, Samantha B. ;
Romine, Margaret F. ;
Saffarini, Daad A. ;
Hill, Eric A. ;
Shi, Liang ;
Elias, Dwayne A. ;
Kennedy, David W. ;
Pinchuk, Grigoriy ;
Watanabe, Kazuya ;
Ishii, Shun'ichi ;
Logan, Bruce ;
Nealson, Kenneth H. ;
Fredrickson, Jim K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (30) :11358-11363
[28]   Anaerobic methane oxidation in a landfill-leachate plume [J].
Grossman, EL ;
Cifuentes, LA ;
Cozzarelli, IM .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2002, 36 (11) :2436-2442
[29]   Reverse methanogenesis: Testing the hypothesis with environmental genomics [J].
Hallam, SJ ;
Putnam, N ;
Preston, CM ;
Detter, JC ;
Rokhsar, D ;
Richardson, PM ;
DeLong, EF .
SCIENCE, 2004, 305 (5689) :1457-1462
[30]   Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea [J].
Hallam, SJ ;
Girguis, PR ;
Preston, CM ;
Richardson, PM ;
DeLong, EF .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (09) :5483-5491