Prospects for measurement-based quantum computing with solid state spins

被引:96
作者
Benjamin, Simon C. [1 ,2 ]
Lovett, Brendon W. [1 ]
Smith, Jason M. [1 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
关键词
Quantum computing; entanglement; graph states; spin qubits; coherence; NV centres; quantum dots; SINGLE SPINS; COHERENT MANIPULATION; SPONTANEOUS EMISSION; COUPLED ELECTRON; GRAPH STATES; ENTANGLEMENT; DYNAMICS; DIAMOND; SPECTROSCOPY; COMPUTATION;
D O I
10.1002/lpor.200810051
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This article aims to review the developments, both theoretical and experimental. that have in the past decade laid the ground for a new approach to solid state quantum computing. Measurement-based quantum computing (MBQC) requires neither direct interaction between qubits nor even what would be considered controlled generation of entangement. Rather it can be achieved using entanglement that is generated probabilistically by the collapse of quantum states upon measurement. Single electronic spins in solids make suitable qubits for such an approach, offering long coherence times and well defined routes to optical measurement. We will review the theoretical basis of MBQC and experimental data for two frontrunner candidate qubits - nitrogen-vacancy (NV) centres in diamond and semiconductor quantum dots - and discuss the prospects and challenges that lie ahead in realising MBQC in the solid state. [GRAPHICS] (C) 2009 by WILEY-VCH Verlag GmbH & Co. KGaA. Weinheim
引用
收藏
页码:556 / 574
页数:19
相关论文
共 112 条
[1]   Electrical control of spin relaxation in a quantum dot [J].
Amasha, S. ;
MacLean, K. ;
Radu, Iuliana P. ;
Zumbuehl, D. M. ;
Kastner, M. A. ;
Hanson, M. P. ;
Gossard, A. C. .
PHYSICAL REVIEW LETTERS, 2008, 100 (04)
[2]  
[Anonymous], MOL DYNAMICS SPECTRO
[3]   Quantum-dot spin-state preparation with near-unity fidelity [J].
Atatüre, M ;
Dreiser, J ;
Badolato, A ;
Högele, A ;
Karrai, K ;
Imamoglu, A .
SCIENCE, 2006, 312 (5773) :551-553
[4]   Deterministic coupling of single quantum dots to single nanocavity modes [J].
Badolato, A ;
Hennessy, K ;
Atatüre, M ;
Dreiser, J ;
Hu, E ;
Petroff, PM ;
Imamoglu, A .
SCIENCE, 2005, 308 (5725) :1158-1161
[5]   Efficient high-fidelity quantum computation using matter qubits and linear optics [J].
Barrett, SD ;
Kok, P .
PHYSICAL REVIEW A, 2005, 71 (06)
[6]   Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations [J].
Batalov, A. ;
Zierl, C. ;
Gaebel, T. ;
Neumann, P. ;
Chan, I. -Y. ;
Balasubramanian, G. ;
Hemmer, P. R. ;
Jelezko, F. ;
Wrachtrup, J. .
PHYSICAL REVIEW LETTERS, 2008, 100 (07)
[7]   Ultra high-Q photonic crystal nanocavity design:: The effect of a low-ε slab material [J].
Bayn, Igal ;
Salzman, Joseph .
OPTICS EXPRESS, 2008, 16 (07) :4972-4980
[8]   Comment on "Efficient high-fidelity quantum computation using matter qubits and linear optics" [J].
Benjamin, SC .
PHYSICAL REVIEW A, 2005, 72 (05)
[9]   Optical generation of matter qubit graph states [J].
Benjamin, SC ;
Eisert, J ;
Stace, TM .
NEW JOURNAL OF PHYSICS, 2005, 7
[10]   Brokered graph-state quantum computation [J].
Benjamin, Simon C. ;
Browne, Daniel E. ;
Fitzsimons, Joe ;
Morton, John J. L. .
NEW JOURNAL OF PHYSICS, 2006, 8