Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume

被引:68
作者
Ammari, H [1 ]
Moskow, S
Vogelius, MS
机构
[1] Ecole Polytech, CMAP, F-91128 Palaiseau, France
[2] Univ Florida, Dept Math, Gainesville, FL 32611 USA
[3] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
来源
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS | 2003年 / 9卷 / 03期
关键词
electromagnetic imaging; small inhomogeneities; numerical reconstruction algorithms;
D O I
10.1051/cocv:2002071
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we discuss the approximate reconstruction of inhomogeneities of small volume. The data used for the reconstruction consist of boundary integrals of the (observed) electromagnetic fields. The numerical algorithms discussed are based on highly accurate asymptotic formulae for the electromagnetic fields in the presence of small volume inhomogeneities.
引用
收藏
页码:49 / 66
页数:18
相关论文
共 18 条
[1]   Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell equations [J].
Ammari, H ;
Vogelius, MS ;
Volkov, D .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (08) :769-814
[2]   Identification of planar cracks by complete overdetermined data: Inversion formulae [J].
Andrieux, S ;
BenAbda, A .
INVERSE PROBLEMS, 1996, 12 (05) :553-563
[3]  
Andrieux S, 1998, MATH METHOD APPL SCI, V21, P895, DOI 10.1002/(SICI)1099-1476(19980710)21:10<895::AID-MMA975>3.0.CO
[4]  
2-1
[5]   Asymptotic formulas for steady state voltage potentials in the presence of conductivity imperfections of small area [J].
Beretta, E ;
Mukherjee, A ;
Vogelius, M .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2001, 52 (04) :543-572
[6]  
BRUHL M, 2001, DIRECT IMPEDANCE TOM
[7]   Inverse scattering of a planar crack in 3D acoustics: closed form solution for a bounded body [J].
Bui, HD ;
Constantinescu, A ;
Maigre, H .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 1999, 327 (10) :971-976
[8]  
Calderon A.P., 1980, Seminar on Numerical Analysis and its Applications to Continuum Physics, Rio de Janeiro, 1980, P65, DOI DOI 10.1590/S0101-82052006000200002
[9]   Identification of conductivity imperfections of small diameter by boundary measurements. Continous dependence and computational reconstruction [J].
Cedio-Fengya, DJ ;
Moskow, S ;
Vogelius, MS .
INVERSE PROBLEMS, 1998, 14 (03) :553-595
[10]  
Daubechies I, 1992, 10 LECT WAVELETS