Frame decomposition of decomposition spaces

被引:80
作者
Borup, Lasse
Nielsen, Morten
机构
[1] Aalborg Univ, Dept Math Sci, DK-9220 Aalborg, Denmark
[2] Washington Univ, Dept Math, St Louis, MO 63130 USA
关键词
decomposition spaces; atomic decomposition; Besov space; modulation space; anisotropic Besov space; curvelets;
D O I
10.1007/s00041-006-6024-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new construction of tight frames for L-2 (R-d) with flexible time-frequency localization is considered. The frames can be adapted to form atomic decompositions for a large family of smoothness spaces on R-d, a class of so-called decomposition spaces. The decomposition space norm can be completely characterized by a sparseness condition on the frame coefficients. As examples of the general construction, new tight frames yielding decompositions of Besov space, anisotropic Besov spaces, alpha-modulation spaces, and anisotropic alpha-modulation spaces are considered. Finally, curvelet-type tight frames are constructed on R-d, d >= 2.
引用
收藏
页码:39 / 70
页数:32
相关论文
共 53 条
[1]  
[Anonymous], 1992, CAMBRIDGE STUDIES AD
[2]  
Auscher P., 1992, WAVELETS TUTORIAL TH, V2, P237
[3]   Arbitrary tilings of the time-frequency plane using local bases [J].
Bernardini, R ;
Kovacevic, J .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (08) :2293-2304
[4]   Nonlinear approximation in α-modulation spaces [J].
Borup, L ;
Nielsen, M .
MATHEMATISCHE NACHRICHTEN, 2006, 279 (1-2) :101-120
[5]  
BORUP L, 2006, ANISOTROPIC TRIEBEL
[6]  
BORUP L, 2006, IN PRESS ARK MAT, V321, P880
[7]   Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces [J].
Bownik, M ;
Ho, KP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (04) :1469-1510
[8]   Atomic and molecular decompositions of anisotropic Besov spaces [J].
Bownik, M .
MATHEMATISCHE ZEITSCHRIFT, 2005, 250 (03) :539-571
[9]   Curvelets and Fourier integral operators [J].
Candès, E ;
Demanet, L .
COMPTES RENDUS MATHEMATIQUE, 2003, 336 (05) :395-398
[10]   New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities [J].
Candès, EJ ;
Donoho, DL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (02) :219-266