High-power infrared (8-micrometer wavelength) superlattice lasers

被引:148
作者
Scamarcio, G [1 ]
Capasso, F [1 ]
Sirtori, C [1 ]
Faist, J [1 ]
Hutchinson, AL [1 ]
Sivco, DL [1 ]
Cho, AY [1 ]
机构
[1] AT&T BELL LABS,LUCENT TECHNOL,MURRAY HILL,NJ 07974
关键词
D O I
10.1126/science.276.5313.773
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A quantum-cascade long-wavelength infrared laser based on superlattice active regions has been demonstrated. In this source, electrons injected by tunneling emit photons corresponding to the energy gap (minigap) between two superlattice conduction bands (minibands). A distinctive design feature is the high oscillator strength of the optical transition. Pulsed operation at a wavelength of about 8 micrometers with peak powers ranging from similar to 0.80 watt at 80 kelvin to 0.2 watt at 200 kelvin has been demonstrated in a superlattice with 1-nanometer-thick AllnAs barriers and 4.3-nanometer-thick GalnAs quantum wells grown by molecular beam epitaxy. These results demonstrate the potential of strongly coupled superlattices as infrared laser materials for high-power sources in which the wavelength can be tailored by design.
引用
收藏
页码:773 / 776
页数:4
相关论文
共 23 条
[11]   High power mid-infrared (lambda greater than or similar to-5 mu m) quantum cascade lasers operating above room temperature [J].
Faist, J ;
Capasso, F ;
Sirtori, C ;
Sivco, DL ;
Baillargeon, JN ;
Hutchinson, AL ;
Chu, SNG ;
Cho, AY .
APPLIED PHYSICS LETTERS, 1996, 68 (26) :3680-3682
[12]   EVALUATION OF SOME SCATTERING TIMES FOR ELECTRONS IN UNBIASED AND BIASED SINGLE-QUANTUM-WELL AND MULTIPLE-QUANTUM-WELL STRUCTURES [J].
FERREIRA, R ;
BASTARD, G .
PHYSICAL REVIEW B, 1989, 40 (02) :1074-1086
[13]   INFRARED-SPECTROSCOPY AND TRANSPORT OF ELECTRONS IN SEMICONDUCTOR SUPERLATTICES [J].
HELM, M .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1995, 10 (05) :557-575
[14]   STRUCTURED-BASE HOT-ELECTRON TRANSISTORS .1. SCATTERING RATES [J].
HERBERT, DC .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1988, 3 (02) :101-110
[15]   Type II mid-infrared quantum well lasers [J].
Malin, JI ;
Meyer, JR ;
Felix, CL ;
Lindle, JR ;
Goldberg, L ;
Hoffman, CA ;
Bartoli, FJ ;
Lin, CH ;
Chang, PC ;
Murry, SJ ;
Yang, RQ ;
Pei, SS .
APPLIED PHYSICS LETTERS, 1996, 68 (21) :2976-2978
[16]   Tunable interminiband infrared emission in superlattice electron transport [J].
Scamarcio, G ;
Capasso, F ;
Faist, J ;
Sirtori, C ;
Sivco, DL ;
Hutchinson, AL ;
Cho, AY .
APPLIED PHYSICS LETTERS, 1997, 70 (14) :1796-1798
[17]   MIDINFRARED LEAD SALT MULTI-QUANTUM-WELL DIODE-LASERS WITH 282 K OPERATION [J].
SHI, Z ;
TACKE, M ;
LAMBRECHT, A ;
BOTTNER, H .
APPLIED PHYSICS LETTERS, 1995, 66 (19) :2537-2539
[18]   Mid-infrared (8.5 mu m) semiconductor lasers operating at room temperature [J].
Sirtori, C ;
Faist, J ;
Capasso, F ;
Sivco, DL ;
Hutchinson, AL ;
Cho, AY .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1997, 9 (03) :294-296
[19]   QUANTUM CASCADE LASER WITH PLASMON-ENHANCED WAVEGUIDE OPERATING AT 8.4 MU-M WAVELENGTH [J].
SIRTORI, C ;
FAIST, J ;
CAPASSO, F ;
SIVCO, DL ;
HUTCHINSON, AL ;
CHO, AY .
APPLIED PHYSICS LETTERS, 1995, 66 (24) :3242-3244
[20]   NONPARABOLICITY AND A SUM-RULE ASSOCIATED WITH BOUND-TO-BOUND AND BOUND-TO-CONTINUUM INTERSUBBAND TRANSITIONS IN QUANTUM-WELLS [J].
SIRTORI, C ;
CAPASSO, F ;
FAIST, J ;
SCANDOLO, S .
PHYSICAL REVIEW B, 1994, 50 (12) :8663-8674