A metal-induced conformational change and activation of HIV-1 integrase

被引:70
作者
AsanteAppiah, E [1 ]
Skalka, AM [1 ]
机构
[1] FOX CHASE CANC CTR,INST CANC RES,PHILADELPHIA,PA 19111
关键词
D O I
10.1074/jbc.272.26.16196
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Retroviral integrases are composed of three independently folding domains whose organization relevant to one another is largely unknown. As an approach to understanding its structure, we have investigated the effect of the required metal cofactor(s), Mn2+ or Mg2+, on the conformation of human immunodeficiency virus type 1 (HIV-1) integrase (IN) using monoclonal antibodies (mAbs) that are specific for each of these three domains, Upon the addition of increasing concentrations of the divalent cations to immobilized HIV-1 IN in ELISA assays, binding of mAbs specific for either the C-terminal domain or for an epitope in the catalytic core domain was lost, whereas binding of an N terminus-specific mAb was unaffected. Size exclusion chromatography of a nonaggregating derivative of HIV-1 IN showed that the oligomeric state of the protein did not change under conditions in which recognition of the core and C terminus-specific mAbs was lost. Preincubation with Mn2+ increased the resistance of HIV-1 IN to proteolytic digestion and produced a digestion pattern that was significantly different from that observed with the apoprotein. A derivative that lacked the N-terminal domain, IN(50-288), exhibited the same metal-dependent changes observed with the full-length protein, whereas the isolated catalytic core domain IN(50-212) did not. From this we conclude that the metal-induced conformational change comprises a reorganization of the core and C-terminal domains. Preincubation with Mn2+ increased the specific activity of HIV-1 IN 5-fold. Enzymatic activity was inhibited by the conformation-sensitive C terminus-specific mAb, but this inhibition was reduced greatly if the enzyme was first preincubated with metal ions. Thus, it appears that apo-HIV-1 IN exists predominantly in an inactive conformation that is converted into a catalytically competent form upon the addition of metal ions.
引用
收藏
页码:16196 / 16205
页数:10
相关论文
共 55 条
[1]   MULTIMERIZATION DETERMINANTS RESIDE IN BOTH THE CATALYTIC CORE AND C-TERMINUS OF AVIAN-SARCOMA VIRUS INTEGRASE [J].
ANDRAKE, MD ;
SKALKA, AM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (49) :29299-29306
[2]   Retroviral integrase, putting the pieces together [J].
Andrake, MD ;
Skalka, AM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (33) :19633-19636
[3]   ATOMIC-STRUCTURE OF THE RUVC RESOLVASE - A HOLLIDAY JUNCTION-SPECIFIC ENDONUCLEASE FROM ESCHERICHIA-COLI [J].
ARIYOSHI, M ;
VASSYLYEV, DG ;
IWASAKI, H ;
NAKAMURA, H ;
SHINAGAWA, H ;
MORIKAWA, K .
CELL, 1994, 78 (06) :1063-1072
[4]  
Ausubel F.M., 1992, SHORT PROTOCOLS MOL, V2nd
[5]   MONOCLONAL-ANTIBODIES AGAINST HIV TYPE-1 INTEGRASE - CLUES TO MOLECULAR-STRUCTURE [J].
BIZUBBENDER, D ;
KULKOSKY, J ;
SKALKA, AM .
AIDS RESEARCH AND HUMAN RETROVIRUSES, 1994, 10 (09) :1105-1115
[6]   HIGH-RESOLUTION STRUCTURE OF THE CATALYTIC DOMAIN OF AVIAN-SARCOMA VIRUS INTEGRASE [J].
BUJACZ, G ;
JASKOLSKI, M ;
ALEXANDRATOS, J ;
WLODAWER, A ;
MERKEL, G ;
KATZ, RA ;
SKALKA, AM .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 253 (02) :333-346
[7]   The catalytic domain of avian sarcoma virus integrase: Conformation of the active-site residues in the presence of divalent cations [J].
Bujacz, G ;
Jaskolski, M ;
Alexandratos, J ;
Wlodawer, A ;
Merkel, G ;
Katz, RA ;
Skalka, AM .
STRUCTURE, 1996, 4 (01) :89-96
[8]  
BURKE CJ, 1992, J BIOL CHEM, V267, P9639
[9]   DOMAINS OF THE INTEGRASE PROTEIN OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 RESPONSIBLE FOR POLYNUCLEOTIDYL TRANSFER AND ZINC-BINDING [J].
BUSHMAN, FD ;
ENGELMAN, A ;
PALMER, I ;
WINGFIELD, P ;
CRAIGIE, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (08) :3428-3432
[10]   ROUS-SARCOMA VIRUS INTEGRASE PROTEIN - MAPPING FUNCTIONS FOR CATALYSIS AND SUBSTRATE-BINDING [J].
BUSHMAN, FD ;
WANG, BB .
JOURNAL OF VIROLOGY, 1994, 68 (04) :2215-2223