Ethanol antagonizes kainate receptor-mediated inhibition of evoked GABAA inhibitory postsynaptic currents in the rat hippocampal CA1 region

被引:28
作者
Crowder, TL [1 ]
Ariwodola, OJ [1 ]
Weiner, JL [1 ]
机构
[1] Wake Forest Univ, Bowman Gray Sch Med, Dept Physiol & Pharmacol, Winston Salem, NC 27157 USA
关键词
D O I
10.1124/jpet.102.038471
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Many studies have demonstrated that ethanol reduces glutamatergic synaptic transmission primarily by inhibiting the N-methyl-D-aspartate subtype of glutamate receptor. In contrast, the other two subtypes of ionotropic glutamate receptor (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid and kainate) have generally been shown to be insensitive to intoxicating concentrations of ethanol. However, we have previously identified a population of kainate receptors that mediate slow excitatory postsynaptic currents in the rat hippocampal CA3 pyramidal cell region that is potently inhibited by low concentrations of ethanol. In this study, we examined the effect of ethanol on kainate receptor-mediated inhibition of evoked GABA(A) inhibitory postsynaptic currents (IPSCs) in the rat hippocampal CA1 pyramidal cell region. Under our recording conditions, bath application of 1 muM kainate significantly inhibited GABA(A) IPSCs. This inhibition seemed to be mediated by the activation of somatodendritic kainate receptors on GABAergic interneurons and the subsequent activation of metabotropic GABA(B) receptors, because the kainate inhibition was largely blocked by pretreating slices with a GABA(B) receptor antagonist. Ethanol pretreatment significantly antagonized the inhibitory effect of kainate on GABA(A) IPSCs, at concentrations as low as 20 mM. In contrast, ethanol did not block the direct inhibitory effect of a GABA(B) receptor agonist on GABA(A) IPSCs. The results of this study suggest that modest concentrations of ethanol may antagonize presynaptic, as well as postsynaptic, kainate receptor function in the rat hippocampus.
引用
收藏
页码:937 / 944
页数:8
相关论文
共 42 条
[1]   Kainate, a double agent that generates seizures: two decades of progress [J].
Ben-Ari, Y ;
Cossart, R .
TRENDS IN NEUROSCIENCES, 2000, 23 (11) :580-587
[2]  
Bureau I, 1999, J NEUROSCI, V19, P653
[3]   Ethanol tolerance and synaptic plasticity [J].
Chandler, LJ ;
Harris, RA ;
Crews, FT .
TRENDS IN PHARMACOLOGICAL SCIENCES, 1998, 19 (12) :491-495
[4]  
Chergui K, 2000, J NEUROSCI, V20, P2175
[5]   Kainate receptors: subunits, synaptic localization and function [J].
Chittajallu, R ;
Braithwaite, SP ;
Clarke, VRJ ;
Henley, JM .
TRENDS IN PHARMACOLOGICAL SCIENCES, 1999, 20 (01) :26-35
[6]   Regulation of glutamate release by presynaptic kainate receptors in the hippocampus [J].
Chittajallu, R ;
Vignes, M ;
Dev, KK ;
Barnes, JM ;
Collingridge, GL ;
Henley, JM .
NATURE, 1996, 379 (6560) :78-81
[7]   GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells [J].
Cossart, R ;
Esclapez, M ;
Hirsch, JC ;
Bernard, C ;
Ben-Ari, Y .
NATURE NEUROSCIENCE, 1998, 1 (06) :470-478
[8]   Functional characterization of kainate receptors in the rat nucleus accumbens core region [J].
Crowder, TL ;
Weiner, JL .
JOURNAL OF NEUROPHYSIOLOGY, 2002, 88 (01) :41-48
[9]   PAIRED-PULSE DEPRESSION OF MONOSYNAPTIC GABA-MEDIATED INHIBITORY POSTSYNAPTIC RESPONSES IN RAT HIPPOCAMPUS [J].
DAVIES, CH ;
DAVIES, SN ;
COLLINGRIDGE, GL .
JOURNAL OF PHYSIOLOGY-LONDON, 1990, 424 :513-531
[10]  
DEITRICH RA, 1989, PHARMACOL REV, V41, P489