An adaptive finite element method for parabolic differential systems: Some algorithmic considerations in solving in three space dimensions

被引:15
作者
Moore, PK [1 ]
机构
[1] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
关键词
adaptive finite element methods; irregular grids;
D O I
10.1137/S1064827598349197
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An adaptive h-refinement method is described for solving systems of parabolic partial differential equations in three space dimensions on hexahedral grids. These grids typically have irregular (hanging) nodes. Solutions are calculated using Galerkin's method with a piecewise trilinear basis in space and a backward difference formula ( BDF) code in time. New a posteriori error indicators based on interpolation error estimates for irregular grids are used to control refinement and coarsening. A more efficient algorithm for assembling banded portions of the Jacobian is introduced. A simple strategy for dealing with storage limitations by limiting the level of refinement is developed. Computational results demonstrate the effectiveness of the adaptive method on linear and nonlinear problems.
引用
收藏
页码:1567 / 1586
页数:20
相关论文
共 23 条
[1]   A posteriori finite element error estimation for diffusion problems [J].
Adjerid, S ;
Belguendouz, B ;
Flaherty, JE .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02) :728-746
[2]   A posteriori error estimation for the finite element method-of-lines solution of parabolic problems [J].
Adjerid, S ;
Flaherty, JE ;
Babuska, I .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (02) :261-286
[3]  
[Anonymous], 1989, Adaptive Methods for Partial Differential Equations
[4]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[5]  
Babuska I., 1980, Computational Methods in Nonlinear Mechanics. Proceedings of the TICOM Second International Conference, P67
[6]  
Bank RE, 1983, ADAPTIVE COMPUTATION, V1, P74
[7]  
Brenan K. E., 1989, NUMERICAL SOLUTION I
[8]   USING KRYLOV METHODS IN THE SOLUTION OF LARGE-SCALE DIFFERENTIAL-ALGEBRAIC SYSTEMS [J].
BROWN, PN ;
HINDMARSH, AC ;
PETZOLD, LR .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (06) :1467-1488
[9]   Edge of chaos and local activity domain of FitzHugh-Nagumo equation [J].
Dogaru, R ;
Chua, LO .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (02) :211-257
[10]   ADAPTIVE FINITE-ELEMENT METHODS FOR PARABOLIC PROBLEMS .4. NONLINEAR PROBLEMS [J].
ERIKSSON, K ;
JOHNSON, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (06) :1729-1749