A posteriori finite element error estimation for diffusion problems

被引:20
作者
Adjerid, S [1 ]
Belguendouz, B
Flaherty, JE
机构
[1] Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Sci Computat Res Ctr, Troy, NY 12180 USA
[3] Univ Sci & Technol Houari Boumediene, Inst Math, Bab Ezzouar Alger, Algeria
关键词
finite element methods; a posteriori error estimation; p-refinement; hierarchical approximations; elliptic and parabolic partial differential equations;
D O I
10.1137/S1064827596305040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Adjerid, Babuska, and Flaherty [Math. Models Methods Appl. Sci., 9 (1999), pp. 261-286] and Yu [Math. Numer. Sinica, 13 (1991), pp. 89-101] and [Math. Numer. Sinica, 13 (1991), pp. 307-314] show that a posteriori estimates of spatial discretization errors of piecewise bi-p polynomial finite element solutions of elliptic and parabolic problems on meshes of square elements may be obtained from jumps in solution gradients at element vertices when p is odd and from local elliptic or parabolic problems when p is even. We show that these simple error estimates are asymptotically correct for other finite element spaces. The key requirement is that the trial space contain all monomial terms of degree p + 1 except for x(1)(p+1) and x(2)(p+1) in a Cartesian (x(1); x(2)) frame. Computational results show that the error estimates are accurate, robust, and efficient for a wide range of problems, including some that are not supported by the present theory. These involve quadrilateral-element meshes, problems with singularities, and nonlinear problems.
引用
收藏
页码:728 / 746
页数:19
相关论文
共 21 条
[1]   HIGH-ORDER FINITE-ELEMENT METHODS FOR SINGULARLY PERTURBED ELLIPTIC AND PARABOLIC PROBLEMS [J].
ADJERID, S ;
AIFFA, M ;
FLAHERTY, JE .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (02) :520-543
[2]   A POSTERIORI ERROR ESTIMATION WITH FINITE-ELEMENT METHODS OF LINES FOR ONE-DIMENSIONAL PARABOLIC-SYSTEMS [J].
ADJERID, S ;
FLAHERTY, JE ;
WANG, YJ .
NUMERISCHE MATHEMATIK, 1993, 65 (01) :1-21
[3]   A posteriori error estimation for the finite element method-of-lines solution of parabolic problems [J].
Adjerid, S ;
Flaherty, JE ;
Babuska, I .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (02) :261-286
[4]   A UNIFIED APPROACH TO A POSTERIORI ERROR ESTIMATION USING ELEMENT RESIDUAL METHODS [J].
AINSWORTH, M ;
ODEN, JT .
NUMERISCHE MATHEMATIK, 1993, 65 (01) :23-50
[5]   The influence and selection of subspaces for a posteriori error estimators [J].
Ainsworth, M .
NUMERISCHE MATHEMATIK, 1996, 73 (04) :399-418
[6]  
[Anonymous], 828637 SAND NAT LAB
[7]   VALIDATION OF A-POSTERIORI ERROR ESTIMATORS BY NUMERICAL APPROACH [J].
BABUSKA, I ;
STROUBOULIS, T ;
UPADHYAY, CS ;
GANGARAJ, SK ;
COPPS, K .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (07) :1073-1123
[8]   A MODEL STUDY OF THE QUALITY OF A-POSTERIORI ERROR ESTIMATORS FOR LINEAR ELLIPTIC PROBLEMS - ERROR ESTIMATION IN THE INTERIOR OF PATCHWISE UNIFORM GRIDS OF TRIANGLES [J].
BABUSKA, I ;
STROUBOULIS, T ;
UPADHYAY, CS .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 114 (3-4) :307-378
[9]  
Babuska I., 1994, Finite Elements in Analysis and Design, V17, P273, DOI 10.1016/0168-874X(94)90003-5
[10]  
BABUSKA I, 1987, FINITE ELEM ANAL DES, V3, P341