DEALLOYED CORE-SHELL FUEL CELL ELECTROCATALYSTS

被引:86
作者
Strasser, Peter [1 ,2 ]
机构
[1] Univ Houston, Dept Chem & Biomol Engn, Houston, TX 77204 USA
[2] Tech Univ Berlin, Inst Chem, D-10624 Berlin, Germany
基金
美国国家科学基金会;
关键词
OXYGEN REDUCTION REACTION; PLATINUM-MONOLAYER ELECTROCATALYSTS; CU NANOPARTICLE ELECTROCATALYSTS; ACTIVITY-STABILITY RELATIONSHIPS; X-RAY-SCATTERING; PT-CU; ALLOY ELECTROCATALYSTS; SELECTIVE DISSOLUTION; ANNEALING CONDITIONS; CATALYTIC-ACTIVITIES;
D O I
10.1515/REVCE.2009.25.4.255
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
We review our recent work on dealloyed nanoparticle electrocatalysts and address their synthesis, structural characterization and surface catalytic performance in low-temperature Polymer Electrolyte Membrane fuel cells (PEMFCs). The active form of the catalyst is obtained by voltammetric dealloying of non-noble metal rich Pt alloy precursors. In the dealloying process, the less noble precursor component, here Cu, is selectively removed from the surface of the precursor alloy particles and hence a Pt enriched particle shell is formed. Single fuel cell tests showed that, when used on the cathode of PEMFCs, dealloyed Pt catalysts show reactivities for the oxygen reduction reaction (ORR) which are up to 6 times higher than those of conventional pure Pt fuel cell catalysts. Similarly, the stability of dealloyed nanoparticle catalysts is superior to that of pure Pt particles. X-ray based structural and compositional studies suggested a core-shell particle structure as the active form of the catalyst consisting of a Pt enriched particle shell surrounding a Pt alloy core. At the present time, this catalyst system constitutes one of the most active fuel cell catalyst system reported in the literature.
引用
收藏
页码:255 / 295
页数:41
相关论文
共 110 条
[1]  
Adzic R, 1998, FRONT ELECT, P197
[2]  
ADZIC R, 2003, LOW PLATINUM LOADING
[3]   Platinum monolayer fuel cell electrocatalysts [J].
Adzic, R. R. ;
Zhang, J. ;
Sasaki, K. ;
Vukmirovic, M. B. ;
Shao, M. ;
Wang, J. X. ;
Nilekar, A. U. ;
Mavrikakis, M. ;
Valerio, J. A. ;
Uribe, F. .
TOPICS IN CATALYSIS, 2007, 46 (3-4) :249-262
[4]  
[Anonymous], 2005, HYDROGEN FUEL CELLS
[5]   Pt submonolayers on Ru nanoparticles - A novel low Pt loading, high CO tolerance fuel cell electrocatalyst [J].
Brankovic, SR ;
Wang, JX ;
Adzic, RR .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (12) :A217-A220
[6]   The promotional effect of gold in catalysis by palladium-gold [J].
Chen, MS ;
Kumar, D ;
Yi, CW ;
Goodman, DW .
SCIENCE, 2005, 310 (5746) :291-293
[7]   Enhanced activity for oxygen reduction reaction on "Pt3CO" nanoparticles:: Direct evidence of percolated and sandwich-segregation structures [J].
Chen, Shuo ;
Ferreira, Paulo J. ;
Sheng, Wenchao ;
Yabuuchi, Naoaki ;
Allard, Lawrence F. ;
Shao-Horn, Yang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (42) :13818-13819
[8]   Origin of Oxygen Reduction Reaction Activity on "Pt3Co" Nanoparticles: Atomically Resolved Chemical Compositions and Structures [J].
Chen, Shuo ;
Sheng, Wenchao ;
Yabuuchi, Naoaki ;
Ferreira, Paulo J. ;
Allard, Lawrence F. ;
Shao-Horn, Yang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (03) :1109-1125
[9]   Metallic mesoporous nanocomposites for electrocatalysis [J].
Ding, Y ;
Chen, MW ;
Erlebacher, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (22) :6876-6877
[10]   An atomistic description of dealloying - Porosity evolution, the critical potential, and rate-limiting behavior [J].
Erlebacher, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (10) :C614-C626