Transform of Riccati equation of constant coefficients through fractional procedure

被引:8
作者
Rosu, HC
Madueño, AL
Socorro, J
机构
[1] IPICyT, Dept Appl Math, San Luis Potosi, Mexico
[2] Univ Guanajuato, Inst Fis, Leon, Mexico
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 04期
关键词
D O I
10.1088/0305-4470/36/4/316
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use a particular fractional generalization of the ordinary differential equations that we apply to the Riccati equation of constant coefficients. By this means the latter is transformed into a modified Riccati equation with the free term expressed as a power of the independent variable which is of the same order as the order of the applied fractional derivative. We provide the solutions of the modified equation and employ the results for the case of the cosmological Riccati equation of FRW barotropic cosmologies that has been recently introduced by Faraoni.
引用
收藏
页码:1087 / 1093
页数:7
相关论文
共 13 条
[1]   Fractional Fokker-Planck equation, solution, and application [J].
Barkai, E .
PHYSICAL REVIEW E, 2001, 63 (04)
[2]   Solving for the dynamics of the universe [J].
Faraoni, V .
AMERICAN JOURNAL OF PHYSICS, 1999, 67 (08) :732-734
[3]   Fractional calculus as a macroscopic manifestation of randomness [J].
Grigolini, P ;
Rocco, A ;
West, BJ .
PHYSICAL REVIEW E, 1999, 59 (03) :2603-2613
[4]  
Hilfer R., 2000, Applications of Fractional Calculus in Physics, V35
[5]   Fractional tuning of the Riccati equation [J].
Metzler, R ;
Glockle, WG ;
Nonnenmacher, TF ;
West, BJ .
FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1997, 5 (04) :597-601
[6]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[7]   Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach [J].
Metzler, R ;
Barkai, E ;
Klafter, J .
PHYSICAL REVIEW LETTERS, 1999, 82 (18) :3563-3567
[8]  
Oldham K.B., 1974, FRACTIONAL CALCULUS
[9]  
Podlubny I, 1998, Fractional Di ff erential Equations
[10]  
Podlubny I., 2002, Fract Calc Appl Anal, V5, P367, DOI DOI 10.1016/j.sigpro.2014.05.026