Fractional-moment CAPM with loss aversion

被引:1
作者
Wu, Yahao [1 ]
Wang, Xiao-Tian [1 ]
Wu, Min [1 ]
机构
[1] S China Univ Technol, Dep Math, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
CAPITAL-ASSET PRICES; E-INFINITY THEORY; SCALE-RELATIVITY; LAGRANGIAN MECHANICS; NONLINEAR DYNAMICS; PREREQUISITES; SPACE;
D O I
10.1016/j.chaos.2009.03.060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a new fractional-order value function which generalizes the value function of Kahneman and Tversky [Kahneman D, Tversky A. Prospect theory: an analysis of decision under risk. Econometrica 1979;47:263-91; Tversky A, Kahneman D. Advances in prospect theory: cumulative representation of uncertainty.]. Risk Uncertainty 1992;4:297-323], and give the corresponding fractional-moment versions of CAPM in the cases of both the prospect theory [Kahneman D, Tversky A. Prospect theory: an analysis of decision under risk. Econometrica 1979;47:263-91; Tversky A, Kahneman D. Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertainty 1992;4:297-323] and the expected utility model. The models that we obtain can be used to price assets when asset return distributions are likely to be asymmetric stable Levy distribution during panics and stampedes in worldwide security markets in 2008. In particular, from the prospect theory we get the following fractional-moment CAPM with loss aversion: E(R-i - R-0) = E[(W - W-0)(-)(-0.12)(R-i - R-0)]+ 2.25E[(W-0 - W)(+)(-0.12)(R-i - R-0)]/E[(W - W-0)(-)(-0.12)(W - R-0)] + 2.25E[(W-0 - W)(-)(-0.12)(W - R-0)].E(W - R-0), where W-0 is a fixed reference point distinguishing between losses and gains. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1406 / 1414
页数:9
相关论文
共 36 条
[1]  
[Anonymous], 2005, Fat-Tailed and Skewed Asset Return Distributions: Implications for Risk Management, Portfolio Selection, and Option Pricing
[2]   Optimal portfolio choice under loss aversion [J].
Berkelaar, AB ;
Kouwenberg, R ;
Post, T .
REVIEW OF ECONOMICS AND STATISTICS, 2004, 86 (04) :973-987
[3]  
BERKELAAR AB, 2008, J ECON DYN CONTROL, V32, P3253
[4]   STRUCTURE OF INVESTOR PREFERENCES AND ASSET RETURNS, AND SEPARABILITY IN PORTFOLIO ALLOCATION - CONTRIBUTION TO PURE THEORY OF MUTUAL FUNDS [J].
CASS, D ;
STIGLITZ, JE .
JOURNAL OF ECONOMIC THEORY, 1970, 2 (02) :122-160
[5]   The Fibonacci code behind super strings and P-Branes.: An answer to M. Kaku's fundamental question [J].
El Naschie, M. S. .
CHAOS SOLITONS & FRACTALS, 2007, 31 (03) :537-547
[6]   Elementary prerequisites for E-infinity (Recommended background readings in nonlinear dynamics, geometry and topology [J].
El Naschie, M. S. .
CHAOS SOLITONS & FRACTALS, 2006, 30 (03) :579-605
[7]   Intermediate prerequisites for E-infinity theory (Further recommended reading in nonlinear dynamics and mathematical physics) [J].
El Naschie, M. Saladin .
CHAOS SOLITONS & FRACTALS, 2006, 30 (03) :622-628
[8]   Advanced prerequisite for E-infinity theory [J].
El Naschie, M. Saladin .
CHAOS SOLITONS & FRACTALS, 2006, 30 (03) :636-641
[9]   On Penrose view of transfinite sets and computability and the fractal character of E-infinity spacetime [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2005, 25 (03) :531-533
[10]   A review of E infinity theory and the mass spectrum of high energy particle physics [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2004, 19 (01) :209-236