A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation

被引:129
作者
Katz, NH [1 ]
Pavlovic, N
机构
[1] Washington Univ, Dept Math, St Louis, MO 63130 USA
[2] Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00039-002-8250-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for the Navier-Stokes equation with dissipation (-Delta)(alpha), where 1 < alpha < 5/4, and smooth initial data, the Hausdorff dimension of the singular set at time of first blow up is at most 5 - 4alpha. This unifies two directions from which one might approach the problem of global solvability, though it provides no direct progress on either.
引用
收藏
页码:355 / 379
页数:25
相关论文
共 11 条
[1]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[2]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[3]  
Cannone M, 1997, REV MAT IBEROAM, V13, P515
[4]  
COIFMAN R, 1997, CAMBRIDGE STUDIES AD, V48
[5]   Well-posedness for the Navier-Stokes equations [J].
Koch, H ;
Tataru, D .
ADVANCES IN MATHEMATICS, 2001, 157 (01) :22-35
[6]  
Lin FH, 1998, COMMUN PUR APPL MATH, V51, P241, DOI 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO
[7]  
2-A
[8]   An elementary proof of the existence and uniqueness theorem for the Navier-Stokes equations [J].
Mattingly, JC ;
Sinai, YG .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 1999, 1 (04) :497-516
[9]  
STEIN EM, 1970, SINGULAR INTEGRALS D
[10]  
Tao T., 2001, LECT NOTES