Electrochemistry of Graphene: New Horizons for Sensing and Energy Storage

被引:530
作者
Pumera, Martin [1 ,2 ]
机构
[1] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki 3050044, Japan
[2] Natl Inst Mat Sci, Ctr Biomat, Tsukuba, Ibaraki 3050044, Japan
关键词
graphene; graphene nanoplatelets; electrochemistry; electron transfer; batteries; CARBON NANOTUBES; NITRIC-ACID; GRAPHITE; SHEETS; LAYER; ELECTROCATALYSIS; INTERCALATION; IMPURITIES; ELECTRODE; NICKEL;
D O I
10.1002/tcr.200900008
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene is a new 2D nanomaterial with outstanding material, physical, chemical, and electrochemical properties. In this review, we first discuss the methods of preparing graphene sheers and their chemistry. Following that, the fundamental reasons governing the electrochemistry of graphene are meaningfully described Graphene is all excellent. electrode material with the advantages of conductivity and electrochemistry of sp(2) carbon but without the disadvantages related to carbon nanotubes, Such as residual metallic impurities. We highlight important applications of graphene and graphene nanoplatelets For sensing, biosensing, and energy storage. (C) 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc Chem Rec 9 211-223; 2009 Published online in Wiley InterScience (www.interscience.wiley com) DOI 10.1002/tcr.200900008
引用
收藏
页码:211 / 223
页数:13
相关论文
共 54 条
[1]   Probing the Electrochemical Properties of Graphene Nanosheets for Biosensing Applications [J].
Alwarappan, Subbiah ;
Erdem, Arzum ;
Liu, Chang ;
Li, Chen-Zhong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (20) :8853-8857
[2]  
[Anonymous], 2005, ANGEW CHEM
[3]  
Banks C.E., 2006, Angew. Chem, V118, P2595
[4]   Carbon nanotubes contain metal impurities which are responsible for the "electrocatalysis" seen at some nanotube-modified electrodes [J].
Banks, CE ;
Crossley, A ;
Salter, C ;
Wilkins, SJ ;
Compton, RG .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (16) :2533-2537
[5]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[6]  
Brodie B.C., 1859, Philos. Trans. R. Soc. Lond., V149, P249, DOI [10.1098/rspl.1859.0007, DOI 10.1098/RSTL.1859.0013]
[7]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493
[8]   Bulk production of a new form of sp2 carbon:: Crystalline graphene nanoribbons [J].
Campos-Delgado, Jessica ;
Romo-Herrera, Jose Manuel ;
Jia, Xiaoting ;
Cullen, David A. ;
Muramatsu, Hiroyuki ;
Kim, Yoong Ahm ;
Hayashi, Takuya ;
Ren, Zhifeng ;
Smith, David J. ;
Okuno, Yu ;
Ohba, Tomonori ;
Kanoh, Hirofumi ;
Kaneko, Katsumi ;
Endo, Morinobu ;
Terrones, Humberto ;
Dresselhaus, Mildred S. ;
Terrones, Mauriclo .
NANO LETTERS, 2008, 8 (09) :2773-2778
[9]   Ex-MWNTs: Graphene Sheets and Ribbons Produced by Lithium Intercalation and Exfoliation of Carbon Nanotubes [J].
Cano-Marquez, Abraham G. ;
Rodriguez-Macias, Fernando J. ;
Campos-Delgado, Jessica ;
Espinosa-Gonzalez, Claudia G. ;
Tristan-Lopez, Ferdinando ;
Ramirez-Gonzalez, Daniel ;
Cullen, David A. ;
Smith, David J. ;
Terrones, Mauricio ;
Vega-Cantu, Yadira I. .
NANO LETTERS, 2009, 9 (04) :1527-1533
[10]   Electron Transport in Single Molecules: From Benzene to Graphene [J].
Chen, F. ;
Tao, N. J. .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (03) :429-438