Visualization of Localization Microscopy Data

被引:92
作者
Baddeley, David [1 ]
Cannell, Mark B. [1 ]
Soeller, Christian [1 ]
机构
[1] Univ Auckland, Dept Physiol, Sch Med Sci, Auckland, New Zealand
关键词
single molecules; localization microscopy; nanoscopy; caveolin; super-resolution; fluorescence; FLUORESCENCE NANOSCOPY; LIMIT;
D O I
10.1017/S143192760999122X
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Localization microscopy techniques based on localizing single fluorophore molecules now routinely achieve accuracies better than 30 nm. Unlike conventional optical microscopies, localization microscopy experiments do not generate an image but a list of discrete coordinates of estimated fluorophore positions. Data display and analysis therefore generally require visualization methods that translate the position data into conventional images. Here we investigate the properties of several widely used visualization techniques and show that a commonly used algorithm based on rendering Gaussians may lead to a 1.44-fold loss of resolution. Existing methods typically do not explicitly take sampling considerations into account and thus may produce Spurious structures. We present two additional visualization algorithms, an adaptive histogram method based on quad-trees and a Delaunay triangulation based visualization of point data that address some of these deficiencies. The new visualization methods are designed to suppress erroneous detail in poorly sampled image areas but avoid loss of resolution in well-sampled regions. A number of criteria for scoring visualization methods are developed as a guide for choosing among visualization methods and are used to qualitatively compare various algorithms.
引用
收藏
页码:64 / 72
页数:9
相关论文
共 14 条
[1]   Light-induced Dark States of Organic Fluochromes Enable 30 nm Resolution Imaging in Standard Media [J].
Baddeley, David ;
Jayasinghe, Izzy ;
Cremer, Christoph ;
Cannell, Mark B. ;
Soeller, Christian .
BIOPHYSICAL JOURNAL, 2009, 96 (02) :L22-L24
[2]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[3]  
De Berg M., 2008, Computational Geometry: Algorithms and Applications, V17
[4]   Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters [J].
Egner, Alexander ;
Geisler, Claudia ;
Von Middendorff, Claas ;
Bock, Hannes ;
Wenzel, Dirk ;
Medda, Rebecca ;
Andresen, Martin ;
Stiel, Andre C. ;
Jakobs, Stefan ;
Eggeling, Christian ;
Schoenle, Andreas ;
Hell, Stefan W. .
BIOPHYSICAL JOURNAL, 2007, 93 (09) :3285-3290
[5]  
Finkel R. A., 1974, Acta Informatica, V4, P1, DOI 10.1007/BF00288933
[6]   Fluorescence nanoscopy by ground-state depletion and single-molecule return [J].
Foelling, Jonas ;
Bossi, Mariano ;
Bock, Hannes ;
Medda, Rebecca ;
Wurm, Christian A. ;
Hein, Birka ;
Jakobs, Stefan ;
Eggeling, Christian ;
Hell, Stefan W. .
NATURE METHODS, 2008, 5 (11) :943-945
[7]   The sampling limit in fluorescence microscopy [J].
Heintzmann, Rainer ;
Sheppard, Colin J. R. .
MICRON, 2007, 38 (02) :145-149
[8]   Ultra-high resolution imaging by fluorescence photoactivation localization microscopy [J].
Hess, Samuel T. ;
Girirajan, Thanu P. K. ;
Mason, Michael D. .
BIOPHYSICAL JOURNAL, 2006, 91 (11) :4258-4272
[9]  
HFILEMANN M, 2008, ANGEW CHEM INT EDIT, V47, P6172
[10]   Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J].
Rust, Michael J. ;
Bates, Mark ;
Zhuang, Xiaowei .
NATURE METHODS, 2006, 3 (10) :793-795