The role of mammalian circadian proteins in normal physiology and genotoxic stress responses

被引:51
作者
Kondratov, Roman V. [1 ]
Gorbacheva, Victoria Y. [1 ]
Antoch, Marina P. [1 ]
机构
[1] Cleveland Clin Fdn, Lerner Res Inst, Dept Canc Biol, Cleveland, OH 44195 USA
来源
CURRENT TOPICS IN DEVELOPMENTAL BIOLOGY, VOL 78 | 2007年 / 78卷
关键词
D O I
10.1016/S0070-2153(06)78005-X
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The last two decades have significantly advanced our understanding of the organization of the circadian system at all levels of regulation-molecular, cellular, tissue, and systemic. It has been recognized that the circadian system represents a complex temporal regulatory network, which plays an important role in synchronizing various biological processes within an organism and coordinating them with the environment. It is believed that deregulation of this synchronization may result in the development of various pathologies. However, recent studies using various circadian mutant mouse models have demonstrated that at least some of the components of the molecular oscillator are actively involved in physiological processes not directly related to their role in the circadian clock. The growing amount of evidence suggests that, in addition to their circadian function, circadian proteins are important in maintaining tissue homeostasis under normal and stress conditions. In this chapter, we will summarize recent data about the regulation of the mammalian molecular circadian oscillator and will focus on a new role of the circadian system and individual circadian proteins in the organism's physiology and response to genotoxic stress in connection with diseases treatment and prevention. (c) 2007, Elsevier Inc.
引用
收藏
页码:173 / +
页数:47
相关论文
共 159 条
[1]   Cocaine sensitization and reward are under the influence of circadian genes and rhythm [J].
Abarca, C ;
Albrecht, U ;
Spanagel, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (13) :9026-9030
[2]   Lithium lengthens the circadian period of individual suprachiasmatic nucleus neurons [J].
Abe, M ;
Herzog, ED ;
Block, GD .
NEUROREPORT, 2000, 11 (14) :3261-3264
[3]   Control of intracellular dynamics of mammalian period proteins by casein kinase I ε (CKIε) and CKIδ in cultured cells [J].
Akashi, M ;
Tsuchiya, Y ;
Yoshino, T ;
Nishida, E .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (06) :1693-1703
[4]   Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus [J].
Akhtar, RA ;
Reddy, AB ;
Maywood, ES ;
Clayton, JD ;
King, VM ;
Smith, AG ;
Gant, TW ;
Hastings, MH ;
Kyriacou, CP .
CURRENT BIOLOGY, 2002, 12 (07) :540-550
[5]   Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue [J].
Ando, H ;
Yanagihara, H ;
Hayashi, Y ;
Obi, Y ;
Tsuruoka, S ;
Takamura, T ;
Kaneko, S ;
Fujimura, A .
ENDOCRINOLOGY, 2005, 146 (12) :5631-5636
[6]   Circadian clock genes as modulators of sensitivity to genotoxic stress [J].
Antoch, MP ;
Kondratov, RV ;
Takahashi, JS .
CELL CYCLE, 2005, 4 (07) :901-907
[7]   A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference [J].
Archer, SN ;
Robilliard, DL ;
Skene, DJ ;
Smits, M ;
Williams, A ;
Arendt, J ;
von Schantz, M .
SLEEP, 2003, 26 (04) :413-415
[8]   Microarray analysis of postmortem temporal cortex from patients with schizophrenia [J].
Aston, C ;
Jiang, LX ;
Sokolov, BP .
JOURNAL OF NEUROSCIENCE RESEARCH, 2004, 77 (06) :858-866
[9]   Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock [J].
Bae, K ;
Jin, XW ;
Maywood, ES ;
Hastings, MH ;
Reppert, SM ;
Weaver, DR .
NEURON, 2001, 30 (02) :525-536
[10]   Mitochondria, oxidants, and aging [J].
Balaban, RS ;
Nemoto, S ;
Finkel, T .
CELL, 2005, 120 (04) :483-495