An all-polymer airflow sensor using a piezoresistive composite elastomer

被引:40
作者
Aiyar, Avishek R. [1 ]
Song, Chao [2 ]
Kim, Seong-Hyok [2 ]
Allen, Mark G. [1 ,2 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
关键词
ARRAY;
D O I
10.1088/0964-1726/18/11/115002
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This paper presents an all-polymer flexible micromachined flow sensor using a carbon-black based conductive composite elastomer as a piezoresistor. The device is composed of an out-of-plane curved flow sensing element formed using a polyimide film. The conductive composite elastomer combines a low Young's modulus (similar to 1.72 MPa) and a high piezoresistive gage factor (similar to 7.3), making it an ideal material for the sensing application. Moreover, the use of the polyimide film, which can be easily laser micromachined, as the material for device fabrication enables the use of planar micromachining techniques, which minimizes process complexities. The proposed fabrication sequence combines the benefits of the polymeric materials used, while simultaneously enabling a backside interconnect scheme for an array of devices, without additional processing steps. The backside interconnect scheme allows for flow field mapping with minimum interference due to the sensing circuitry. Individual sensors as small as 1.5 mm in length and 0.4 mm in width, with 70 mu m wide and 20-50 mu m thick piezoresistor lines, have been fabricated. Wind tunnel testing demonstrated sensitivities as high as 66 Omega/(m s(-1)). The integration of polyimide films and conductive elastomers into a flow sensing device using the simple planar fabrication technologies discussed is suitable for reduced cost, large area sensor array development, and can also leverage traditional flexible circuit fabrication.
引用
收藏
页数:9
相关论文
共 15 条
[1]   ADVANCEMENTS IN TECHNOLOGY AND DESIGN OF BIOMIMETIC FLOW-SENSOR ARRAYS [J].
Bruinink, C. M. ;
Jaganatharaja, R. K. ;
de Boer, M. J. ;
Berenschot, E. ;
Kolster, M. L. ;
Lammerink, T. S. J. ;
Wiegerink, R. J. ;
Krijnen, G. J. M. .
IEEE 22ND INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2009), 2009, :152-155
[2]   Two-dimensional micromachined flow sensor array for fluid mechanics studies [J].
Chen, J ;
Fan, ZF ;
Zou, J ;
Engel, J ;
Liu, C .
JOURNAL OF AEROSPACE ENGINEERING, 2003, 16 (02) :85-97
[3]  
ENGEL JM, 2005, IEEE SENS IRV OCT NO, P4
[4]   Polyurethane rubber all-polymer artificial hair cell sensor [J].
Engel, Jonathan M. ;
Chen, Jack ;
Liu, Chang ;
Bullen, David .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2006, 15 (04) :729-736
[5]   Design and fabrication of artificial lateral line flow sensors [J].
Fan, ZF ;
Chen, J ;
Zou, J ;
Bullen, D ;
Liu, C ;
Delcomyn, F .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2002, 12 (05) :655-661
[6]   Microsensors and actuators for macrofluidic control [J].
Huang, A ;
Lew, J ;
Xu, Y ;
Tai, YC ;
Ho, CM .
IEEE SENSORS JOURNAL, 2004, 4 (04) :494-502
[7]  
JIANG F, 2000, IEEE INT C MICR SYST, P364
[8]   A flexible micromachine-based shear-stress sensor array and its application to separation-point detection [J].
Jiang, FK ;
Lee, GB ;
Tai, YC ;
Ho, CM .
SENSORS AND ACTUATORS A-PHYSICAL, 2000, 79 (03) :194-203
[9]   Wearable, redundant fabric-based sensor arrays for reconstruction of body segment posture [J].
Lorussi, F ;
Rocchia, W ;
Scilingo, EP ;
Tognetti, A ;
De Rossi, D .
IEEE SENSORS JOURNAL, 2004, 4 (06) :807-818
[10]  
PENG W, 2004, J MATER SCI, V39, P4937