Generalized Multiresolution Analyses with Given Multiplicity Functions

被引:7
作者
Baggett, Lawrence W. [2 ]
Larsen, Nadia S. [3 ]
Merrill, Kathy D. [4 ]
Packer, Judith A. [2 ]
Raeburn, Iain [1 ]
机构
[1] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia
[2] Univ Colorado, Dept Math, Boulder, CO 80309 USA
[3] Univ Oslo, Dept Math, N-0316 Oslo, Norway
[4] Colorado Coll, Dept Math, Colorado Springs, CO 80903 USA
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
Generalized multiresolution analysis; Multiresolution analysis; Filter; Wavelet; Isometry; Direct limit; WAVELETS; CONSTRUCTION; FILTERS;
D O I
10.1007/s00041-008-9031-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generalized multiresolution analyses are increasing sequences of subspaces of a Hilbert space a"< that fail to be multiresolution analyses in the sense of wavelet theory because the core subspace does not have an orthonormal basis generated by a fixed scaling function. Previous authors have studied a multiplicity function m which, loosely speaking, measures the failure of the GMRA to be an MRA. When the Hilbert space a"< is L (2)(a"e (n) ), the possible multiplicity functions have been characterized by Baggett and Merrill. Here we start with a function m satisfying a consistency condition, which is known to be necessary, and build a GMRA in an abstract Hilbert space with multiplicity function m.
引用
收藏
页码:616 / 633
页数:18
相关论文
共 17 条
[1]   GENERAL EXISTENCE THEOREMS FOR ORTHONORMAL WAVELETS, AN ABSTRACT APPROACH [J].
BAGGETT, L ;
CAREY, A ;
MORAN, W ;
OHRING, P .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1995, 31 (01) :95-111
[2]  
BAGGETT L, 1999, CONT MATH, V247, P17
[3]   Generalized multi-resolution analyses and a construction procedure for all wavelet sets in Rn [J].
Baggett, LW ;
Medina, HA ;
Merrill, KD .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1999, 5 (06) :563-573
[4]   Construction of Parseval wavelets from redundant filter systems [J].
Baggett, LW ;
Jorgensen, PET ;
Merrill, KD ;
Packer, JA .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (08)
[5]   The construction of wavelets from generalized conjugate mirror filters in L2(Rn) [J].
Baggett, LW ;
Courter, JE ;
Merrill, KD .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2002, 13 (03) :201-223
[6]   A characterization of dimension functions of wavelets [J].
Bownik, M ;
Rzeszotnik, Z ;
Speegle, D .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2001, 10 (01) :71-92
[7]   Isometries, shifts, Cuntz algebras and multiresolution wavelet analysis of scale N [J].
Bratteli, O ;
Jorgensen, PET .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1997, 28 (04) :382-443
[8]  
COURTER J, 1999, CONT MATH, V247, P183
[9]  
Dahlke S., 1994, Wavelets, Images and Surface Fitting., P141
[10]  
Dudley R. M., 2002, Real Analysis and Probability , Vol. 74 Cambridge Studies in Advanced Mathematics, V74