Intermittency of Burgers' turbulence

被引:104
作者
Balkovsky, E
Falkovich, G
Kolokolov, I
Lebedev, V
机构
[1] BUDKER INST NUCL PHYS, NOVOSIBIRSK 630090, RUSSIA
[2] LD LANDAU THEORET PHYS INST, MOSCOW 117940, RUSSIA
关键词
D O I
10.1103/PhysRevLett.78.1452
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the tails of probability density function (PDF) for the velocity that satisfies Burgers equation driven by a Gaussian large-scale force. The saddle-point approximation is employed in the path integral so that the calculation of the PDF tails boils down to finding the special field-force configuration (instanton) that realizes the extremum of probability. For the PDFs of velocity and its derivatives u((k)) = partial derivative(x)(k)u, the general formula is found: In P(\u((k))\) proportional to -(\u((k))\/Re-k)(3/(k+1)).
引用
收藏
页码:1452 / 1455
页数:4
相关论文
共 18 条
[11]  
GOTOH T, IN PRESS
[12]   Instantons in the Burgers equation [J].
Gurarie, V ;
Migdal, A .
PHYSICAL REVIEW E, 1996, 54 (05) :4908-4914
[13]   LAGRANGEAN FOR CLASSICAL FIELD DYNAMICS AND RENORMALIZATION GROUP CALCULATIONS OF DYNAMICAL CRITICAL PROPERTIES [J].
JANSSEN, HK .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1976, 23 (04) :377-380
[14]   LAGRANGIAN-HISTORY STATISTICAL THEORY FOR BURGERS EQUATION [J].
KRAICHNAN, RH .
PHYSICS OF FLUIDS, 1968, 11 (02) :265-+
[15]   STATISTICAL DYNAMICS OF CLASSICAL SYSTEMS [J].
MARTIN, PC ;
SIGGIA, ED ;
ROSE, HA .
PHYSICAL REVIEW A, 1973, 8 (01) :423-437
[16]   NEARLY LOCALIZED STATES IN WEAKLY DISORDERED CONDUCTORS [J].
MUZYKANTSKII, BA ;
KHMELNITSKII, DE .
PHYSICAL REVIEW B, 1995, 51 (08) :5480-5483
[17]   Turbulence without pressure [J].
Polyakov, AM .
PHYSICAL REVIEW E, 1995, 52 (06) :6183-6188
[18]  
WEINAN E, IN PRESS