A priori estimates of smoothness of solutions to difference Bellman equations with linear and quasi-linear operators

被引:10
作者
Krylov, N. V. [1 ]
机构
[1] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
finite-difference approximations; Bellman equations; fully nonlinear equations;
D O I
10.1090/S0025-5718-07-01953-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A priori estimates for finite-difference approximations for the first and second-order derivatives are obtained for solutions of parabolic equations described in the title.
引用
收藏
页码:669 / 698
页数:30
相关论文
共 13 条
[1]  
[Anonymous], 1999, ELECTRON J PROBAB
[2]   Error bounds for monotone approximation schemes for Hamilton-Jacobi-Bellma equations [J].
Barles, G ;
Jakobsen, ER .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (02) :540-558
[3]   On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations [J].
Barles, G ;
Jakobsen, ER .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2002, 36 (01) :33-54
[4]  
BARLES G, IN PRESS ERROR BOUND
[5]   A fast algorithm for the two dimensional HJB equation of stochastic control [J].
Bonnans, JF ;
Ottenwaelter, E ;
Zidani, H .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2004, 38 (04) :723-735
[6]  
DONG HJ, 2005, ELECTRON J DIFFER EQ, P1
[7]  
DONG HJ, UNPUB APPL MATH OPTI
[8]  
[Hongjie Dong Hongjie Dong], 2005, [Алгебра и анализ, St. Petersburg Mathematical Journal, Algebra i analiz], V17, P108
[10]  
Krylov N.V., 1980, CONTROLLED DIFFUSION