A fast algorithm for the two dimensional HJB equation of stochastic control

被引:40
作者
Bonnans, JF [1 ]
Ottenwaelter, E
Zidani, H
机构
[1] Inria Rocquencourt, Projet Sydoco, Domaine Voluceau,BP 105, F-78153 Le Chesnay, France
[2] Inria Rocquencourt, IUT Paris, F-78153 Le Chesnay, France
[3] ENSTA, Unite Math Appl, F-75739 Paris 15, France
关键词
stochastic control; finite differences; viscosity solutions; consistency; HJB equation; Stern-Brocot tree;
D O I
10.1051/m2an:2004034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper analyses the implementation of the generalized finite differences method for the HJB equation of stochastic control, introduced by two of the authors in [Bonnans and Zidani, SIAM J. Numer. Anal. 41 (2003) 1008-1021]. The computation of coefficients needs to solve at each point of the grid (and for each control) a linear programming problem. We show here that, for two dimensional problems, this linear programming problem can be solved in O(p(max)) operations, where p(max) is the size of the stencil. The method is based on a walk on the Stern-Brocot tree, and on the related filling of the set of positive semidefinite matrices of size two.
引用
收藏
页码:723 / 735
页数:13
相关论文
共 15 条
[1]  
[Anonymous], MATH SCI ENG
[2]  
[Anonymous], 1994, Concrete Mathematics: a Foundation for Computer Science
[3]  
Barles G., 1991, Asymptotic Analysis, V4, P271
[4]   On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations [J].
Barles, G ;
Jakobsen, ER .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2002, 36 (01) :33-54
[5]  
BARLES G, IN PRESS ERROR BOUND
[6]   Consistency of generalized finite difference schemes for the stochastic HJB equation [J].
Bonnans, JF ;
Zidani, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (03) :1008-1021
[7]  
BONNANS JF, 2004, 5078 INRIA
[8]   AN APPROXIMATION SCHEME FOR THE OPTIMAL-CONTROL OF DIFFUSION-PROCESSES [J].
CAMILLI, F ;
FALCONE, M .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1995, 29 (01) :97-122
[9]  
Fleming W., 2006, CONTROLLED MARKOV PR
[10]   Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate parabolic equations [J].
Jakobsen, ER ;
Karlsen, KH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 183 (02) :497-525