Circulating polymerase chain reaction chips utilizing multiple-membrane activation

被引:16
作者
Chih-Hao Wang [1 ]
Chen, Yi-Yu
Liao, Chia-Sheng
Hsieh, Tsung-Min
Luo, Ching-Hsing
Wu, Jiunn-Jong
Lee, Huei-Huang
Lee, Gwo-Bin
机构
[1] Natl Cheng Kung Univ, Dept Engn Sci, Tainan 701, Taiwan
[2] Natl Cheng Kung Univ, Dept Elect Engn, Tainan 701, Taiwan
[3] Natl Cheng Kung Univ, Dept Med Technol, Tainan 701, Taiwan
关键词
D O I
10.1088/0960-1317/17/2/024
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reports a new micromachined, circulating, polymerase chain reaction (PCR) chip for nucleic acid amplification. The PCR chip is comprised of a microthermal control module and a polydimethylsiloxane (PDMS)-based microfluidic control module. The microthermal control modules are formed with three individual heating and temperature-sensing sections, each modulating a specific set temperature for denaturation, annealing and extension processes, respectively. Micro-pneumatic valves and multiple-membrane activations are used to form the microfluidic control module to transport sample fluids through three reaction regions. Compared with other PCR chips, the new chip is more compact in size, requires less time for heating and cooling processes, and has the capability to randomly adjust time ratios and cycle numbers depending on the PCR process. Experimental results showed that detection genes for two pathogens, Streptococcus pyogenes (S. pyogenes, 777 bps) and Streptococcus pneumoniae (S. pneumoniae, 273 bps), can be successfully amplified using the new circulating PCR chip. The minimum number of thermal cycles to amplify the DNA-based S. pyogenes for slab gel electrophoresis is 20 cycles with an initial concentration of 42.5 pg mu l(-1). Experimental data also revealed that a high reproducibility up to 98% could be achieved if the initial template concentration of the S. pyogenes was higher than 4 pg mu l(-1).
引用
收藏
页码:367 / 375
页数:9
相关论文
共 33 条
[1]   Miniaturised nucleic acid analysis [J].
Auroux, PA ;
Koc, Y ;
deMello, A ;
Manz, A ;
Day, PJR .
LAB ON A CHIP, 2004, 4 (06) :534-546
[2]   Electrokinetically synchronized polymerase chain reaction microchip fabricated in polycarbonate [J].
Chen, JF ;
Wabuyele, M ;
Chen, HW ;
Patterson, D ;
Hupert, M ;
Shadpour, H ;
Nikitopoulos, D ;
Soper, SA .
ANALYTICAL CHEMISTRY, 2005, 77 (02) :658-666
[3]   Continuous segmented-flow polymerase chain reaction for high-throughput miniaturized DNA amplification [J].
Curcio, M ;
Roeraade, J .
ANALYTICAL CHEMISTRY, 2003, 75 (01) :1-7
[4]   Real-time nucleic acid sequence-based amplification in nanoliter volumes [J].
Gulliksen, A ;
Solli, L ;
Karlsen, F ;
Rogne, H ;
Hovig, E ;
Nordstrom, T ;
Sirevåg, R .
ANALYTICAL CHEMISTRY, 2004, 76 (01) :9-14
[5]   Penicillin-binding proteins in β-lactam-resistant Streptococcus pneumoniae [J].
Hakenbeck, R ;
Kaminski, K ;
König, A ;
Van der Linden, M ;
Paik, J ;
Reichmann, P ;
Zähner, D .
MICROBIAL DRUG RESISTANCE, 1999, 5 (02) :91-99
[6]   A continuum model for size-dependent deformation of elastic films of nano-scale thickness [J].
He, LH ;
Lim, CW ;
Wu, BS .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2004, 41 (3-4) :847-857
[7]   Invasive group a streptococcal disease in Taiwan is not associated with the presence of streptococcal pyrogenic exotoxin genes [J].
Hsueh, PR ;
Wu, JJ ;
Tsai, PJ ;
Liu, JW ;
Chuang, YC ;
Luh, KT .
CLINICAL INFECTIOUS DISEASES, 1998, 26 (03) :584-589
[8]  
Kanagawa T, 2003, J BIOSCI BIOENG, V96, P317, DOI 10.1263/jbb.96.317
[9]   Chemical amplification: Continuous-flow PCR on a chip [J].
Kopp, MU ;
de Mello, AJ ;
Manz, A .
SCIENCE, 1998, 280 (5366) :1046-1048
[10]  
Lagally E. T., 2001, P MICR TOT AN SYST M, P117