Global, in vivo, and site-specific phosphorylation dynamics in signaling networks

被引:2777
作者
Olsen, Jesper V.
Blagoev, Blagoy [1 ]
Gnad, Florian
Macek, Boris
Kumar, Chanchal
Mortensen, Peter
Mann, Matthias
机构
[1] Univ So Denmark, Ctr Expt Bioinformat, Dept Biochem & Mol Biol, DK-5230 Odense, Denmark
[2] Max Planck Inst Biochem, Dept Proteom & Signal Transduct, D-82152 Martinsried, Germany
关键词
D O I
10.1016/j.cell.2006.09.026
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cell signaling mechanisms often transmit information via posttranslational protein modifications, most importantly reversible protein phosphorylation. Here we develop and apply a general mass spectrometric technology for identification and quantitation of phosphorylation sites as a function of stimulus, time, and subcellular location. We have detected 6,600 phosphorylation sites on 2,244 proteins and have determined their temporal dynamics after stimulating HeLa cells with epidermal growth factor (EGF) and recorded them in the Phosida database. Fourteen percent of phosphorylation sites are modulated at least 2-fold by EGF, and these were classified by their temporal profiles. Surprisingly, a majority of proteins contain multiple phosphorylation sites showing different kinetics, suggesting that they serve as platforms for integrating signals. In addition to protein kinase cascades, the targets of reversible phosphorylation include ubiquitin ligases, guanine nucleotide exchange factors, and at least 46 different transcriptional regulators. The dynamic phosphoproteorne provides a missing link in a global, integrative view of cellular regulation.
引用
收藏
页码:635 / 648
页数:14
相关论文
共 61 条
[1]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[2]   Phosphoproteome analysis of HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC) [J].
Amanchy, R ;
Kalume, DE ;
Iwahori, A ;
Zhong, J ;
Pandey, A .
JOURNAL OF PROTEOME RESEARCH, 2005, 4 (05) :1661-1671
[3]   Nucleolar proteome dynamics [J].
Andersen, JS ;
Lam, YW ;
Leung, AKL ;
Ong, SE ;
Lyon, CE ;
Lamond, AI ;
Mann, M .
NATURE, 2005, 433 (7021) :77-83
[4]   Large-scale characterization of HeLa cell nuclear phosphoproteins [J].
Beausoleil, SA ;
Jedrychowski, M ;
Schwartz, D ;
Elias, JE ;
Villén, J ;
Li, JX ;
Cohn, MA ;
Cantley, LC ;
Gygi, SP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (33) :12130-12135
[5]   Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics [J].
Blagoev, B ;
Ong, SE ;
Kratchmarova, I ;
Mann, M .
NATURE BIOTECHNOLOGY, 2004, 22 (09) :1139-1145
[6]   A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling [J].
Blagoev, B ;
Kratchmarova, I ;
Ong, SE ;
Nielsen, M ;
Foster, LJ ;
Mann, M .
NATURE BIOTECHNOLOGY, 2003, 21 (03) :315-318
[7]   Linking Rap to cell adhesion [J].
Bos, JL .
CURRENT OPINION IN CELL BIOLOGY, 2005, 17 (02) :123-128
[8]   The role of STATs in transcriptional control and their impact on cellular function [J].
Bromberg, J ;
Darnell, JE .
ONCOGENE, 2000, 19 (21) :2468-2473
[9]   Proteomic analysis of cellular signaling [J].
Chen, WG ;
White, FM .
EXPERT REVIEW OF PROTEOMICS, 2004, 1 (03) :343-354
[10]   The role of protein phosphorylation in human health and disease - Delivered on June 30th 2001 at the FEBS Meeting in Lisbon [J].
Cohen, P .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (19) :5001-5010