共 123 条
A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution
被引:64
作者:
Andersson, Jan O.
[1
]
Sjogren, Asa M.
Horner, David S.
Murphy, Colleen A.
Dyal, Patricia L.
Svard, Staffan G.
Logsdon, John M., Jr.
Ragan, Mark A.
Hirt, Robert P.
Roger, Andrew J.
机构:
[1] Uppsala Univ, Ctr Biomed, Inst Cell & Mol Biol, Uppsala, Sweden
[2] Dalhousie Univ, Dept Biochem & Mol Biol, Program Evolutionary Biol, Canadian Inst Adv Res, Halifax, NS, Canada
[3] Nat Hist Museum, Dept Zool, London SW7 5BD, England
[4] Natl Res Council Canada, Atlantic Reg Lab, Inst Marine Biosci, Halifax, NS B3H 3Z1, Canada
[5] Univ Iowa, Dept Biol Sci, Royal J Carver Ctr Comparat Genom, Iowa City, IA USA
[6] Swedish Univ Agr Sci, Dept Microbiol, S-75007 Uppsala, Sweden
[7] Univ Milan, Dipartimento Sci Biomol & Biotecnol, Milan, Italy
[8] Univ Queensland, ARC Ctr Bioinformat, Brisbane, Qld, Australia
[9] Univ Queensland, Inst Mol Biosci, Brisbane, Qld, Australia
[10] Newcastle Univ, Sch Biol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
来源:
基金:
英国惠康基金;
关键词:
D O I:
10.1186/1471-2164-8-51
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
Background: Comparative genomic studies of the mitochondrion-lacking protist group Diplomonadida (diplomonads) has been lacking, although Giardia lamblia has been intensively studied. We have performed a sequence survey project resulting in 2341 expressed sequence tags (EST) corresponding to 853 unique clones, 5275 genome survey sequences (GSS), and eleven finished contigs from the diplomonad fish parasite Spironucleus salmonicida (previously described as S. barkhanus). Results: The analyses revealed a compact genome with few, if any, introns and very short 3' untranslated regions. Strikingly different patterns of codon usage were observed in genes corresponding to frequently sampled ESTs versus genes poorly sampled, indicating that translational selection is influencing the codon usage of highly expressed genes. Rigorous phylogenomic analyses identified 84 genes - mostly encoding metabolic proteins-that have been acquired by diplomonads or their relatively close ancestors via lateral gene transfer (LGT). Although most acquisitions were from prokaryotes, more than a dozen represent likely transfers of genes between eukaryotic lineages. Many genes that provide novel insights into the genetic basis of the biology and pathogenicity of this parasitic protist were identified including 149 that putatively encode variant-surface cysteine-rich proteins which are candidate virulence factors. A number of genomic properties that distinguish S. salmonicida from its human parasitic relative G. lamblia were identified such as nineteen putative lineage-specific gene acquisitions, distinct mutational biases and codon usage and distinct polyadenylation signals. Conclusion: Our results highlight the power of comparative genomic studies to yield insights into the biology of parasitic protists and the evolution of their genomes, and suggest that genetic exchange between distantly-related protist lineages may be occurring at an appreciable rate in eukaryote genome evolution.
引用
收藏
页数:25
相关论文