Orderings for factorized sparse approximate inverse preconditioners

被引:58
作者
Benzi, M
Tuma, M
机构
[1] Univ Calif Los Alamos Natl Lab, Sci Comp Grp CIC 19, Los Alamos, NM 87545 USA
[2] Acad Sci Czech Republ, Inst Comp Sci, Prague 18207 8, Czech Republic
关键词
sparse linear systems; sparse matrices; preconditioned Krylov subspace methods; graph theory; orderings; decay rates; factorized sparse approximate inverses; incomplete biconjugation;
D O I
10.1137/S1064827598339372
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The influence of reorderings on the performance of factorized sparse approximate inverse preconditioners is considered. Some theoretical results on the effect of orderings on the fill-in and decay behavior of the inverse factors of a sparse matrix are presented. It is shown experimentally that certain reorderings, like minimum degree and nested dissection, can be very beneficial. The benefit consists of a reduction in the storage and time required for constructing the preconditioner, and of faster convergence of the preconditioned iteration in many cases of practical interest.
引用
收藏
页码:1851 / 1868
页数:18
相关论文
共 38 条
[1]   A comparative study of sparse approximate inverse preconditioners [J].
Benzi, M ;
Tuma, M .
APPLIED NUMERICAL MATHEMATICS, 1999, 30 (2-3) :305-340
[2]   Orderings for incomplete factorization preconditioning of nonsymmetric problems [J].
Benzi, M ;
Szyld, DB ;
Van Duin, A .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (05) :1652-1670
[3]   A sparse approximate inverse preconditioner for nonsymmetric linear systems [J].
Benzi, M ;
Tuma, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (03) :968-994
[4]   A sparse approximate inverse preconditioner for the conjugate gradient method [J].
Benzi, M ;
Meyer, CD ;
Tuma, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (05) :1135-1149
[5]   Numerical experiments with two approximate inverse preconditioners [J].
Benzi, M ;
Tuma, M .
BIT, 1998, 38 (02) :234-241
[6]  
BENZI M, 1999, P 9 SIAM C PAR PROC
[7]   Ordering, anisotropy, and factored sparse approximate inverses [J].
Bridson, R ;
Tang, WP .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (03) :867-882
[8]   Wavelet sparse approximate inverse preconditioners [J].
Chan, TF ;
Tang, WP ;
Wan, WL .
BIT, 1997, 37 (03) :644-660
[9]   Approximate inverse preconditioners via sparse-sparse iterations [J].
Chow, E ;
Saad, Y .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (03) :995-1023
[10]  
Davis T. A., 1994, NA DIGEST, V94