Engineered xyloglucan specificity in a carbohydrate-binding module

被引:35
作者
Gunnarsson, Lavinia Cicortas
Zhou, Qi
Montanier, Cedric
Karlsson, Eva Nordberg
Brumer, Harry, III
Ohlin, Mats
机构
[1] Lund Univ, Dept Immunotechnol, SE-22184 Lund, Sweden
[2] AlbaNova Univ Ctr, KTH, Royal Inst Technol, Sch Biotechnol, SE-10691 Stockholm, Sweden
[3] Newcastle Univ, Inst Cell & Mol Biosci, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England
[4] Lund Univ, Dept Biotechnol, SE-22100 Lund, Sweden
基金
美国国家科学基金会;
关键词
binding specificity; carbohydrate-binding module; molecular engineering; phage display; xyloglucan;
D O I
10.1093/glycob/cwl038
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The field of plant cell wall biology is constantly growing and consequently so is the need for more sensitive and specific probes for individual wall components. Xyloglucan is a key polysaccharide widely distributed in the plant kingdom in both structural and storage tissues that exist in both fucosylated and non-fucosylated variants. Presently, the only xyloglucan marker available is the monoclonal antibody CCRC-M1 that is specific to terminal alpha-1,2-linked fucosyl residues on xyloglucan oligo- and polysaccharides. As a viable alternative to searches for natural binding proteins or creation of new monoclonal antibodies, an approach to select xyloglucan-specific binding proteins from a combinatorial library of the carbohydrate-binding module, CBM4-2, from xylanase Xyn10A of Rhodothermus marinus is described. Using phage display technology in combination with a chemoenzymatic method to anchor xyloglucan to solid supports, the selection of xyloglucan-binding modules with no detectable residual wild-type xylan and beta-glucan-binding ability was achieved.
引用
收藏
页码:1171 / 1180
页数:10
相关论文
共 60 条
[1]   Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase:: cloning, expression and binding studies [J].
Abou Hachem, M ;
Karlsson, EN ;
Bartonek-Roxå, E ;
Raghothama, S ;
Simpson, PJ ;
Gilbert, HJ ;
Williamson, MP ;
Holst, O .
BIOCHEMICAL JOURNAL, 2000, 345 :53-60
[2]   Inactivated enzymes as probes of the structure of arabinoxylans as observed by atomic force microscopy [J].
Adams, EL ;
Kroon, PA ;
Williamson, G ;
Gilbert, HJ ;
Morris, VJ .
CARBOHYDRATE RESEARCH, 2004, 339 (03) :579-590
[3]  
Ball P, 2005, NAT MATER, V4, P515, DOI 10.1038/nmat1425
[4]   Probing the cell wall heterogeneity of micro-dissected wheat caryopsis using both active and inactive forms of a GH11 xylanase [J].
Beaugrand, J ;
Paës, G ;
Reis, D ;
Takahashi, M ;
Debeire, P ;
O'Donohue, M ;
Chabbert, B .
PLANTA, 2005, 222 (02) :246-257
[5]   Production of poplar xyloglucan endotransglycosylase using the methylotrophic yeast Pichia pastoris [J].
Bollok, M ;
Henriksson, H ;
Kallas, Å ;
Jahic, M ;
Teeri, TT ;
Enfors, SO .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2005, 126 (01) :61-77
[6]   Binding specificity and thermodynamics of a family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A [J].
Boraston, AB ;
Creagh, AL ;
Alam, MM ;
Kormos, JM ;
Tomme, P ;
Haynes, CA ;
Warren, RAJ ;
Kilburn, DG .
BIOCHEMISTRY, 2001, 40 (21) :6240-6247
[7]   Carbohydrate-binding modules: fine-tuning polysaccharide recognition [J].
Boraston, AB ;
Bolam, DN ;
Gilbert, HJ ;
Davies, GJ .
BIOCHEMICAL JOURNAL, 2004, 382 (03) :769-781
[8]   Xyloglucan endotransglycosylases have a function during the formation of secondary cell walls of vascular tissues [J].
Bourquin, V ;
Nishikubo, N ;
Abe, H ;
Brumer, H ;
Denman, S ;
Eklund, M ;
Christiernin, M ;
Teeri, TT ;
Sundberg, B ;
Mellerowicz, EJ .
PLANT CELL, 2002, 14 (12) :3073-3088
[9]   Activation of crystalline cellulose surfaces through the chemoenzymatic modification of xyloglucan [J].
Brumer, H ;
Zhou, Q ;
Baumann, MJ ;
Carlsson, K ;
Teeri, TT .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (18) :5715-5721
[10]  
Carpita N., 2000, BIOCH MOL BIOL PLANT, P52