Afferent neurotransmission mediated by hemichannels in mammalian taste cells

被引:247
作者
Romanov, Roman A.
Rogachevskaja, Olga A.
Bystrova, Marina F.
Jiang, Peihua
Margolskee, Robert F.
Kolesnikov, Stanislav S.
机构
[1] Russian Acad Sci, Inst Cell Biophys, Pushchino 142290, Moscow Region, Russia
[2] Mt Sinai Sch Med, Dept Physiol & Biophys, New York, NY USA
关键词
ATP biosensor; ATP release; hemichannels; neurotransmission; taste cells;
D O I
10.1038/sj.emboj.7601526
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In mammalian taste buds, ionotropic P2X receptors operate in gustatory nerve endings to mediate afferent inputs. Thus, ATP secretion represents a key aspect of taste transduction. Here, we characterized individual vallate taste cells electrophysiologically and assayed their secretion of ATP with a biosensor. Among electrophysiologically distinguishable taste cells, a population was found that released ATP in a manner that was Ca2+ independent but voltage-dependent. Data from physiological and pharmacological experiments suggested that ATP was released from taste cells via specific channels, likely to be connexin or pannexin hemichannels. A small fraction of ATP-secreting taste cells responded to bitter compounds, indicating that they express taste receptors, their G-protein-coupled and downstream transduction elements. Single cell RT-PCR revealed that ATP-secreting taste cells expressed gustducin, TRPM5, PLC beta 2, multiple connexins and pannexin 1. Altogether, our data indicate that tastant-responsive taste cells release the neurotransmitter ATP via a non-exocytotic mechanism dependent upon the generation of an action potential.
引用
收藏
页码:657 / 667
页数:11
相关论文
共 58 条
[1]   THE MULTIDRUG RESISTANCE (MDR1) GENE-PRODUCT FUNCTIONS AS AN ATP CHANNEL [J].
ABRAHAM, EH ;
PRAT, AG ;
GERWECK, L ;
SENEVERATNE, T ;
ARCECI, RJ ;
KRAMER, R ;
GUIDOTTI, G ;
CANTIELLO, HF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (01) :312-316
[2]   NONINVASIVE RECORDING OF RECEPTOR CELL-ACTION POTENTIALS AND SUSTAINED CURRENTS FROM SINGLE TASTE-BUDS MAINTAINED IN THE TONGUE - THE RESPONSE TO MUCOSAL NACL AND AMILORIDE [J].
AVENET, P ;
LINDEMANN, B .
JOURNAL OF MEMBRANE BIOLOGY, 1991, 124 (01) :33-41
[3]   Pannexin membrane channels are mechanosensitive conduits for ATP [J].
Bao, L ;
Locovei, S ;
Dahl, G .
FEBS LETTERS, 2004, 572 (1-3) :65-68
[4]   Nucleoside triphosphate diphosphohydrolase-2 is the ecto-ATPase of type I cells in taste buds [J].
Bartel, Dianna L. ;
Sullivan, Susan L. ;
Lavoie, Elise G. ;
Sevigny, Jean ;
Finger, Thomas E. .
JOURNAL OF COMPARATIVE NEUROLOGY, 2006, 497 (01) :1-12
[5]   Calcium signaling mediated by P2Y receptors in mouse taste cells [J].
Baryshnikov, SG ;
Rogachevskaja, OA ;
Kolesnikov, SS .
JOURNAL OF NEUROPHYSIOLOGY, 2003, 90 (05) :3283-3294
[6]   Macula densa cell signaling involves ATP release through a maxi anion channel [J].
Bell, PD ;
Lapointe, JY ;
Sabirov, R ;
Hayashi, S ;
Peti-Peterdi, J ;
Manabe, K ;
Kovacs, G ;
Okada, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (07) :4322-4327
[7]   New roles for astrocytes:: Gap junction hemichannels have something to communicate [J].
Bennett, MVL ;
Contreras, JE ;
Bukauskas, FF ;
Sáez, JC .
TRENDS IN NEUROSCIENCES, 2003, 26 (11) :610-617
[8]   Localization of ATP-gated P2X2 and P2X3 receptor immunoreactive nerves in rat taste buds [J].
Bo, XN ;
Alavi, A ;
Xiang, ZH ;
Oglesby, I ;
Ford, A ;
Burnstock, G .
NEUROREPORT, 1999, 10 (05) :1107-1111
[9]   Purinergic signalling: ATP release [J].
Bodin, P ;
Burnstock, G .
NEUROCHEMICAL RESEARCH, 2001, 26 (8-9) :959-969
[10]   Pharmacological sensitivity of ATP release triggered by photoliberation of inositol-1,4,5-trisphosphate and zero extracellular calcium in brain endothelial cells [J].
Braet, K ;
Aspeslagh, S ;
Vandamme, W ;
Willecke, K ;
Martin, PEM ;
Evans, WH ;
Leybaert, L .
JOURNAL OF CELLULAR PHYSIOLOGY, 2003, 197 (02) :205-213