Stability and Instance Optimality for Gaussian Measurements in Compressed Sensing

被引:72
作者
Wojtaszczyk, P. [1 ]
机构
[1] Univ Warsaw, Inst Appl Math, Warsaw, Poland
关键词
Signal recovery algorithms; Restricted isometry condition; Compressed sensing; l(1)-minimization; Gaussian measurement matrix; Signal recovery; Sparse approximation; RESTRICTED ISOMETRY PROPERTY; RANDOM MATRICES;
D O I
10.1007/s10208-009-9046-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In compressed sensing, we seek to gain information about a vector xaa"e (N) from d a parts per thousand(a) N nonadaptive linear measurements. Candes, Donoho, Tao et al. (see, e.g., Candes, Proc. Intl. Congress Math., Madrid, 2006; Candes et al., Commun. Pure Appl. Math. 59:1207-1223, 2006; Donoho, IEEE Trans. Inf. Theory 52:1289-1306, 2006) proposed to seek a good approximation to x via a"" (1) minimization. In this paper, we show that in the case of Gaussian measurements, a"" (1) minimization recovers the signal well from inaccurate measurements, thus improving the result from Candes et al. (Commun. Pure Appl. Math. 59:1207-1223, 2006). We also show that this numerically friendly algorithm (see Candes et al., Commun. Pure Appl. Math. 59:1207-1223, 2006) with overwhelming probability recovers the signal with accuracy, comparable to the accuracy of the best k-term approximation in the Euclidean norm when k similar to d/ln N.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 19 条
[11]   DIAMETERS OF SOME FINITE-DIMENSIONAL SETS AND CLASSES OF SMOOTH FUNCTIONS [J].
KASIN, BS .
MATHEMATICS OF THE USSR-IZVESTIYA, 1977, 11 (02) :317-333
[12]   Randomized isomorphic Dvoretzky theorem [J].
Litvak, A ;
Mankiewicz, P ;
Tomczak-Jaegermann, N .
COMPTES RENDUS MATHEMATIQUE, 2002, 335 (04) :345-350
[13]   Smallest singular value of random matrices and geometry of random polytopes [J].
Litvak, AE ;
Pajor, A ;
Rudelson, M ;
Tomczak-Jaegermann, N .
ADVANCES IN MATHEMATICS, 2005, 195 (02) :491-523
[14]  
Lorentz George G., 1996, Constructive Approximation: Advanced Problems, V304, DOI New York
[15]   Compact groups of operators on subproportional quotients of l1m [J].
Mankiewicz, P .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2000, 52 (05) :999-1017
[16]   Reconstruction and subgaussian processes [J].
Mendelson, S ;
Pajor, A ;
Tomczak-Jaegermann, N .
COMPTES RENDUS MATHEMATIQUE, 2005, 340 (12) :885-888
[17]   Uniform Uncertainty Principle for Bernoulli and Subgaussian Ensembles [J].
Mendelson, Shahar ;
Pajor, Alain ;
Tomczak-Jaegermann, Nicole .
CONSTRUCTIVE APPROXIMATION, 2008, 28 (03) :277-289
[18]  
Needell D., SIGNAL RECOVERY INCO
[19]  
Needell D., 2007, UNIFORM UNCERTAINTY