Randomized isomorphic Dvoretzky theorem

被引:6
作者
Litvak, A [1 ]
Mankiewicz, P
Tomczak-Jaegermann, N
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Polish Acad Sci, Inst Math, PL-00950 Warsaw, Poland
关键词
D O I
10.1016/S1631-073X(02)02476-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a symmetric convex body in R-N for which B-2(N) is the ellipsoid of minimal volume. We provide estimates for the geometric distance of a 'typical' rank n projection of K to B-2(n), for 1 less than or equal to n < N. Known examples show that the resulting estimates are optimal (up to numerical constants) even for the Banach-Mazur distance.
引用
收藏
页码:345 / 350
页数:6
相关论文
共 15 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
[Anonymous], MATH APPL
[3]  
GLUSKIN ED, 1989, MATH USSR SB, V64, P85, DOI [DOI 10.1070/SM1989V064N01ABEH003295, 10.1070/SM1989v064n01ABEH003295]
[4]  
Gordon Y, 1998, STUD MATH, V127, P191
[5]   SOME INEQUALITIES FOR GAUSSIAN-PROCESSES AND APPLICATIONS [J].
GORDON, Y .
ISRAEL JOURNAL OF MATHEMATICS, 1985, 50 (04) :265-289
[6]   Gaussian version of a theorem of Milman and Schechtman [J].
Guedon, O .
POSITIVITY, 1997, 1 (01) :1-5
[7]  
LITVAK AE, 2000, LECT NOTES MATH, V1795, P169
[8]   Geometry of families of random projections of symmetric convex bodies [J].
Mankiewicz, P ;
Tomczak-Jaegermann, N .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (06) :1282-1326
[9]  
MILMAN V, 1998, MSRI PUBLICATIONS, V34, P159
[10]  
Milman V., 1971, FUNCT ANAL APPL, V5, P28