Randomized isomorphic Dvoretzky theorem

被引:6
作者
Litvak, A [1 ]
Mankiewicz, P
Tomczak-Jaegermann, N
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Polish Acad Sci, Inst Math, PL-00950 Warsaw, Poland
关键词
D O I
10.1016/S1631-073X(02)02476-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a symmetric convex body in R-N for which B-2(N) is the ellipsoid of minimal volume. We provide estimates for the geometric distance of a 'typical' rank n projection of K to B-2(n), for 1 less than or equal to n < N. Known examples show that the resulting estimates are optimal (up to numerical constants) even for the Banach-Mazur distance.
引用
收藏
页码:345 / 350
页数:6
相关论文
共 15 条
[11]  
MILMAN VD, 1995, CR ACAD SCI I-MATH, V321, P541
[12]   Global versus local asymptotic theories of finite-dimensional normed spaces [J].
Milman, VD ;
Schechtman, G .
DUKE MATHEMATICAL JOURNAL, 1997, 90 (01) :73-93
[13]  
MILMAN VD, 1996, P 2 EUR C MATH BUD
[14]  
Pisier G., 1989, VOLUME CONVEX BODIES
[15]   John's decompositions: Selecting a large part [J].
Vershynin, R .
ISRAEL JOURNAL OF MATHEMATICS, 2001, 122 (1) :253-277