Numerical relativity and compact binaries

被引:148
作者
Baumgarte, TW
Shapiro, SL
机构
[1] Bowdoin Coll, Dept Phys & Astron, Brunswick, ME 04011 USA
[2] Univ Illinois, Dept Phys, Urbana, IL 61820 USA
[3] Univ Illinois, Dept Astron, Urbana, IL 61820 USA
[4] Univ Illinois, NCSA, Urbana, IL 61820 USA
来源
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS | 2003年 / 376卷 / 02期
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
D O I
10.1016/S0370-1573(02)00537-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Numerical relativity is the most promising tool for theoretically modeling the inspiral and coalescence of neutron star and black hole binaries, which, in turn, are among-the most promising sources of gravitational radiation for future detection by gravitational wave observatories. In this article we review numerical relativity approaches to modeling compact binaries. Starting with a brief introduction to the 3 + 1 decomposition of,Einstein's equations, we discuss important components of numerical relativity, including the initial data problem, reformulations of Einstein's, equations, coordinate conditions, and strategies for locating and handling black holes on numerical grids. We focus on those approaches which currently seem most relevant for the compact binary problem. We then outline how these methods are used to model binary neutron stars and black holes, and review the current status of inspiral and coalescence simulations. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:41 / 131
页数:91
相关论文
共 293 条
  • [61] Einstein's equations with asymptotically stable constraint propagation
    Brodbeck, O
    Frittelli, S
    Reula, OA
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (02) : 909 - 923
  • [62] Binary black hole mergers in 3d numerical relativity
    Brügmann, B
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 1999, 8 (01): : 85 - 100
  • [63] Adaptive mesh and geodesically sliced Schwarzschild spacetime in 3+1 dimensions
    Brugmann, B
    [J]. PHYSICAL REVIEW D, 1996, 54 (12): : 7361 - 7372
  • [64] CADEZ A, 1974, ANN PHYS-NEW YORK, V83, P449, DOI 10.1016/0003-4916(74)90206-1
  • [65] CADEZ A, 1971, THESIS U N CAROLINA
  • [66] Constraint-preserving boundary conditions in numerical relativity
    Calabrese, G
    Lehner, L
    Tiglio, M
    [J]. PHYSICAL REVIEW D, 2002, 65 (10)
  • [67] Stability properties of a formulation of Einstein's equations
    Calabrese, G
    Pullin, J
    Sarbach, O
    Tiglio, M
    [J]. PHYSICAL REVIEW D, 2002, 66 (06):
  • [68] Chandrasekhar S., 1992, MATH THEORY BLACK HO
  • [69] UNIVERSALITY AND SCALING IN GRAVITATIONAL COLLAPSE OF A MASSLESS SCALAR FIELD
    CHOPTUIK, MW
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (01) : 9 - 12
  • [70] HYPERBOLICITY OF THE 3+1 SYSTEM OF EINSTEIN EQUATIONS
    CHOQUETBRUHAT, Y
    RUGGERI, T
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 89 (02) : 269 - 275