Temperature analysis and characteristics of highly strained InGaAs-GaAsP-GaAs (λ > 1.17 μm) quantum-well lasers

被引:46
作者
Tansu, N [1 ]
Chang, YL
Takeuchi, T
Bour, DP
Corzine, SW
Tan, MRT
Mawst, LJ
机构
[1] Univ Wisconsin, Dept Elect Comp Engn, Madison, WI 53706 USA
[2] Agilent Technol Labs, Commun & Opt Res Labs, Palo Alto, CA 94304 USA
关键词
diode lasers; epitaxial growth; long-wavelength lasers; quantum-well lasers; semiconductor growth; semiconductor lasers; strain; temperature analysis;
D O I
10.1109/JQE.2002.1005415
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Characteristic temperature coefficients of the threshold current (T(0)) and the external differential quantum efficiency (T(1)) are studied as simple functions of the temperature dependence of the physical parameters of the semiconductor lasers. Simple expressions of characteristics temperature coefficients of the threshold current (T.) and the external differential quantum efficiency (T(1)) are expressed as functions as physical parameters and their temperature dependencies. The parameters studied here include the threshold (J(th)) and transparency (J(tr)) current density, the carrier injection efficiency (eta(inj)) and external (eta(d)) differential quantum efficiency, the internal loss (alpha(i)), and the material gain parameter (g(0)). The temperature analysis is performed on low-threshold current density (lambda = 1.17-1.19 mum) InGaAs-GaAsP-GaAs quantum-well lasers, although it is applicable to lasers with other active-layer materials. Analytical expressions for To and T, are shown to accurately predict the cavity length dependence of these parameters for the InGaAs active lasers.
引用
收藏
页码:640 / 651
页数:12
相关论文
共 60 条
[11]   1-mW CW-RT monolithic VCSEL at 1.55 μm [J].
Boucart, J ;
Starck, C ;
Gaborit, F ;
Plais, A ;
Bouché, N ;
Derouin, E ;
Goldstein, L ;
Fortin, C ;
Carpentier, D ;
Salet, P ;
Brillouet, F ;
Jacquet, J .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1999, 11 (06) :629-631
[12]   DRIFT LEAKAGE CURRENT IN ALGAINP QUANTUM-WELL LASERS [J].
BOUR, DP ;
TREAT, DW ;
THORNTON, RL ;
GEELS, RS ;
WELCH, DF .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1993, 29 (05) :1337-1343
[14]  
CHEN ZB, 1999, P APCC OECC 99 BEIJ, V2, P1311
[15]   A MODEL FOR GRIN-SCH-SQW DIODE-LASERS [J].
CHINN, SR ;
ZORY, PS ;
REISINGER, AR .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1988, 24 (11) :2191-2214
[16]   1.2-μm GaAsP/InGaAs strain compensated single-quantum-well diode laser on GaAs using metal-organic chemical vapor deposition [J].
Choi, WJ ;
Dapkus, D ;
Jewell, JJ .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1999, 11 (12) :1572-1574
[17]  
CHUANG SL, 1995, PHYSICS OPTOELECTRON
[18]  
Coldren L. A., 2012, DIODE LASERS PHOTONI, V218
[19]   ON THE SEMICONDUCTOR-LASER LOGARITHMIC GAIN CURRENT-DENSITY RELATION [J].
DETEMPLE, TA ;
HERZINGER, CM .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1993, 29 (05) :1246-1252
[20]   TEMPERATURE-DEPENDENT CRITICAL LAYER THICKNESS FOR IN0.36GA0.64AS/GAAS SINGLE QUANTUM-WELLS [J].
EKENSTEDT, MJ ;
WANG, SM ;
ANDERSSON, TG .
APPLIED PHYSICS LETTERS, 1991, 58 (08) :854-855