Microwave synthesis, optical properties and surface area studies of NiO nanoparticles

被引:84
作者
Al-Sehemi, Abdullah G. [1 ,2 ,3 ]
Al-Shihri, Ayed S. [1 ]
Kalam, Abul [1 ]
Du, Gaohui [4 ]
Ahmad, Tokeer [5 ]
机构
[1] King Khalid Univ, Dept Chem, Fac Sci, Abha 61413, Saudi Arabia
[2] King Khalid Univ, Unit Sci & Technol, Fac Sci, Abha 61413, Saudi Arabia
[3] King Khalid Univ, Ctr Excellence Adv Mat Res, Abha 61413, Saudi Arabia
[4] Zhejiang Normal Univ, Inst Phys Chem, Zhejiang Key Lab React Chem Solid Surfaces, Jinhua 321004, Peoples R China
[5] Jamia Millia Islamia, Dept Chem, Nanochem Lab, New Delhi 110025, India
关键词
NiO oxide; Electron microscopy; X-ray techniques; Optical properties; BET surface area analysis; ALPHA-NICKEL HYDROXIDE; LOW-TEMPERATURE GROWTH; THERMAL-DECOMPOSITION; HIERARCHICAL BETA-NI(OH)(2); ASSISTED SYNTHESIS; POROUS NICKEL; NANOSTRUCTURES; PRECIPITATION; MORPHOLOGY; PRECURSOR;
D O I
10.1016/j.molstruc.2013.10.065
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report here the synthesis of nickel oxide (NiO) nanoparticles by microwave-assisted method, using a common precipitating agent followed by calcination at 400 degrees C. The effect of the microwave and pH on the crystallite size, morphology, structure, energy band gap and surface area of NiO have been investigated by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV-vis) and BET surface area studies. It was observed that on increasing the volume of NaOH, the optical band gap energy (2.85-2.95 eV) and specific surface area (33.1-39.8 m(2)/g) increases, however the average particles size decreases (16.5-14 nm). (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:56 / 61
页数:6
相关论文
共 71 条
[1]   Magnetic and electrochemical properties of nickel oxide nanoparticles obtained by the reverse-micellar route [J].
Ahmad, T ;
Ramanujachary, KV ;
Lofland, SE ;
Ganguli, AK .
SOLID STATE SCIENCES, 2006, 8 (05) :425-430
[2]   Low-temperature growth and properties of flower-shaped β-Ni(OH)2 and NiO structures composed of thin nanosheets networks [J].
Al-Hajry, A. ;
Umar, Ahmad ;
Vaseem, M. ;
Al-Assiri, M. S. ;
El-Tantawy, F. ;
Bououdina, M. ;
Al-Heniti, S. ;
Hahn, Y. -B. .
SUPERLATTICES AND MICROSTRUCTURES, 2008, 44 (02) :216-222
[3]   A facile route to sea urchin-like NiO architectures [J].
Bai, Liuyang ;
Yuan, Fangli ;
Hu, Peng ;
Yan, Shikai ;
Wang, Xi ;
Li, Shaohua .
MATERIALS LETTERS, 2007, 61 (8-9) :1698-1700
[4]   Microwave chemistry for inorganic nanomaterials synthesis [J].
Bilecka, Idalia ;
Niederberger, Markus .
NANOSCALE, 2010, 2 (08) :1358-1374
[5]  
Cai Y., 2014, J ALLOY COMPD, V582, P328
[6]   Platinum-Based Nanostructured Materials: Synthesis, Properties, and Applications [J].
Chen, Aicheng ;
Holt-Hindle, Peter .
CHEMICAL REVIEWS, 2010, 110 (06) :3767-3804
[7]   Characterization of sputtered NiO thin films [J].
Chen, HL ;
Lu, YM ;
Hwang, WS .
SURFACE & COATINGS TECHNOLOGY, 2005, 198 (1-3) :138-142
[8]   Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications [J].
Chen, Xiaobo ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2007, 107 (07) :2891-2959
[9]   Properties and microstructure of NiO/SDC materials for SOFC anode applications [J].
Cheng Jigui ;
Deng Liping ;
Zhang Benrui ;
Shi Ping ;
Meng Guangya .
RARE METALS, 2007, 26 (02) :110-117
[10]   STRUCTURE AND PROPERTIES OF PRECIPITATED NICKEL-IRON HYDROXIDES [J].
DEMOURGUESGUERLOU, L ;
DELMAS, C .
JOURNAL OF POWER SOURCES, 1993, 45 (03) :281-289