Different types of chaos synchronization in two coupled piecewise linear maps

被引:47
作者
Maistrenko, Y [1 ]
Kapitaniak, T [1 ]
机构
[1] TECH UNIV LODZ, DIV DYNAM, PL-90924 LODZ, POLAND
关键词
D O I
10.1103/PhysRevE.54.3285
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Dynamics of a four-parameter family of two-dimensional piecewise linear endomorphisms which consist of two linearly coupled one-dimensional maps is considered. We show that under analytically given conditions chaotic behavior in both maps can be synchronized. Depending on the coupling the parameters chaotic attractor's synchronized state is characterized by different types of stability.
引用
收藏
页码:3285 / 3292
页数:8
相关论文
共 29 条
[1]  
Afraimovich V. S., 1986, Radiophysics and Quantum Electronics, V29, P795, DOI 10.1007/BF01034476
[2]   RIDDLED BASINS [J].
Alexander, J. C. ;
Yorke, James A. ;
You, Zhiping ;
Kan, I. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04) :795-813
[3]  
ANISHCHENKO VS, 1991, RADIOTEKH ELEKTRON+, V36, P338
[4]   BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS [J].
ASHWIN, P ;
BUESCU, J ;
STEWART, I .
PHYSICS LETTERS A, 1994, 193 (02) :126-139
[5]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[6]   A simple way to compute the existence region of 1D chaotic attractors in 2D-maps [J].
Celka, P .
PHYSICA D, 1996, 90 (03) :235-241
[7]   CIRCUIT IMPLEMENTATION OF SYNCHRONIZED CHAOS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV .
PHYSICAL REVIEW LETTERS, 1993, 71 (01) :65-68
[8]  
DESOUSA M, 1992, PHYS REV A, V46, P7359
[9]   SYNCHRONIZING CHAOS FROM ELECTRONIC PHASE-LOCKED LOOPS [J].
Endo, Tetsuro ;
Chua, Leon O. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (03) :701-710
[10]  
FUIJSAKA H, 1983, PROG THEOR PHYS, V70, P1240