Basal plane pyrolytic graphite modified electrodes: Comparison of carbon nanotubes and graphite powder as electrocatalysts

被引:436
作者
Moore, RR [1 ]
Banks, CE [1 ]
Compton, RG [1 ]
机构
[1] Univ Oxford, Phys & Theoret Chem Lab, Oxford OX1 3QZ, England
关键词
D O I
10.1021/ac040017q
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The oxidations of NADH, epinephrine, and norepinephrine are studied using carbon nanotube and graphite powder-modified basal plane pyrolytic graphite electrodes. Immobilization is achieved in two ways: first, via abrasive attachment of multiwall carbon nanotubes or graphite powder by gently rubbing the electrode surface on a fine quality paper supporting the desired material; second, via "film" modification from dispersing either graphite powder or nanotubes in acetonitrile and pipeting a small volume onto the electrode surface and allowing the solvent to volatilize. While electrocatalytic behavior of both types of nanotube-modified electrodes is shown, with enhanced currents and reduced peak-to-peak separations in the voltammetry in comparison with naked basal plane pyrolytic graphite, similar catalytic behavior is also seen at the graphite powder-modified electrodes. Caution is, therefore, suggested in assigning unique catalytic properties to carbon nanotubes.
引用
收藏
页码:2677 / 2682
页数:6
相关论文
共 24 条
[1]   Nanotubes from carbon [J].
Ajayan, PM .
CHEMICAL REVIEWS, 1999, 99 (07) :1787-1799
[2]   PHYSICS OF CARBON NANOTUBES [J].
DRESSELHAUS, MS ;
DRESSELHAUS, G ;
SAITO, R .
CARBON, 1995, 33 (07) :883-891
[3]   Protein electrochemistry using aligned carbon nanotube arrays [J].
Gooding, JJ ;
Wibowo, R ;
Liu, JQ ;
Yang, WR ;
Losic, D ;
Orbons, S ;
Mearns, FJ ;
Shapter, JG ;
Hibbert, DB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (30) :9006-9007
[4]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58
[5]   Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode [J].
Luo, HX ;
Shi, ZJ ;
Li, NQ ;
Gu, ZN ;
Zhuang, QK .
ANALYTICAL CHEMISTRY, 2001, 73 (05) :915-920
[6]  
MCCREERY RL, 1990, ELECTROANALYTICAL CH, V17, P304
[7]   Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes [J].
Musameh, M ;
Wang, J ;
Merkoci, A ;
Lin, YH .
ELECTROCHEMISTRY COMMUNICATIONS, 2002, 4 (10) :743-746
[8]   Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes [J].
Nugent, JM ;
Santhanam, KSV ;
Rubio, A ;
Ajayan, PM .
NANO LETTERS, 2001, 1 (02) :87-91
[9]   Carbon nanotubes paste electrode [J].
Rubianes, MD ;
Rivas, GA .
ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (08) :689-694
[10]   Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes [J].
Sherigara, BS ;
Kutner, W ;
D'Souza, F .
ELECTROANALYSIS, 2003, 15 (09) :753-772