Modeling study of thermoelectric SiGe nanocomposites

被引:167
作者
Minnich, A. J. [1 ]
Lee, H. [1 ]
Wang, X. W. [2 ]
Joshi, G. [2 ]
Dresselhaus, M. S. [3 ,4 ]
Ren, Z. F. [2 ]
Chen, G. [1 ]
Vashaee, D. [5 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA
[3] MIT, Dept Phys, Cambridge, MA 02139 USA
[4] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[5] Oklahoma State Univ, Sch Elect & Comp Engn, Tulsa, OK 74106 USA
基金
美国国家科学基金会;
关键词
FIGURE-OF-MERIT; THERMAL-CONDUCTIVITY; POLYCRYSTALLINE SILICON; MONTE-CARLO; TRANSPORT; PRECIPITATION; PERFORMANCE; MOBILITY; NANOSTRUCTURES; SCATTERING;
D O I
10.1103/PhysRevB.80.155327
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanocomposite thermoelectric materials have attracted much attention recently due to experimental demonstrations of improved thermoelectric properties over those of the corresponding bulk material. In order to better understand the reported data and to gain insight into transport in nanocomposites, we use the Boltzmann transport equation under the relaxation-time approximation to calculate the thermoelectric properties of n-type and p-type SiGe nanocomposites. We account for the strong grain-boundary scattering mechanism in nanocomposites using phonon and electron grain-boundary scattering models. The results from this analysis are in excellent agreement with recently reported measurements for the n-type nanocomposite but the experimental Seebeck coefficient for the p-type nanocomposite is approximately 25% higher than the model's prediction. The reason for this discrepancy is not clear at the present time and warrants further investigation. Using new mobility measurements and the model, we find that dopant precipitation is an important process in both n-type and p-type nanocomposites, in contrast to bulk SiGe, where dopant precipitation is most significant only in n-type materials. The model also shows that the potential barrier at the grain boundary required to explain the data is several times larger than the value estimated using the Poisson equation, indicating the presence of crystal defects in the material. This suggests that an improvement in mobility is possible by reducing the number of defects or reducing the number of trapping states at the grain boundaries.
引用
收藏
页数:14
相关论文
共 63 条
[1]   Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics:: Enhanced performance in Pb1-xSnxTe-PbS [J].
Androulakis, John ;
Lin, Chia-Her ;
Kong, Hun-Jin ;
Uher, Ctirad ;
Wu, Chun-I ;
Hogan, Timothy ;
Cook, Bruce A. ;
Caillat, Thierry ;
Paraskevopoulos, Konstantinos M. ;
Kanatzidis, Mercouri G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (31) :9780-9788
[2]  
Askerov B., 1994, ELECT TRANSPORT PHEN
[3]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[4]   DIFFUSION-COEFFICIENT OF ELECTRONS IN SILICON [J].
BRUNETTI, R ;
JACOBONI, C ;
NAVA, F ;
REGGIANI, L ;
BOSMAN, G ;
ZIJLSTRA, RJJ .
JOURNAL OF APPLIED PHYSICS, 1981, 52 (11) :6713-6722
[5]   MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES [J].
CALLAWAY, J .
PHYSICAL REVIEW, 1959, 113 (04) :1046-1051
[6]   Heat transfer in nanostructures for solid-state energy conversion [J].
Chen, G ;
Shakouri, A .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2002, 124 (02) :242-252
[7]  
Chen G, 2001, SEMICONDUCT SEMIMET, V71, P203
[8]  
Chen G., 2005, PAPPAL SER MECH ENG
[9]   EFFECTIVE MASS AND MOBILITY OF HOLES IN STRAINED SI1-XGEX LAYERS ON (001) SI1-YGEY SUBSTRATE [J].
CHUN, SK ;
WANG, KL .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1992, 39 (09) :2153-2164
[10]   THERMAL + ELECTRICAL PROPERTIES OF HEAVILY DOPED GE-SI ALLOYS UP TO 1300 DEGREES K [J].
DISMUKES, JP ;
EKSTROM, E ;
BEERS, DS ;
STEIGMEIER, EF ;
KUDMAN, I .
JOURNAL OF APPLIED PHYSICS, 1964, 35 (10) :2899-&