A new chaotic system and its circuit emulation

被引:24
作者
Liu Ling [1 ]
Su Yan-Chen
Liu Chong-Xin
机构
[1] SW Jiaotong Univ, Dept Mech Engn, Chengdu 610031, Peoples R China
[2] Xi An Jiao Tong Univ, Coll Elect Engn, Xian 710049, Peoples R China
关键词
new chaotic system; dynamical behavior; circuit realization;
D O I
10.7498/aps.55.3933
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper a new chaotic system is presented. Some basic dynamical properties are investigated. The oscillator circuit of a new chaotic system realized is simulated using EWB.
引用
收藏
页码:3933 / 3937
页数:5
相关论文
共 11 条
[1]   On a generalized Lorenz canonical form of chaotic systems [J].
Celikovsky, S ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (08) :1789-1812
[2]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[3]   Nonlinear feedback synchronization control of Liu chaotic system [J].
Chen, ZS ;
Sun, KH ;
Zhang, TS .
ACTA PHYSICA SINICA, 2005, 54 (06) :2580-2583
[4]   Synchronization in chaotic systems based on resilient controller [J].
Guan, XP ;
He, YH ;
Wu, J .
ACTA PHYSICA SINICA, 2003, 52 (11) :2718-2722
[5]   Experimental confirmation of a new chaotic attractor [J].
Han, FL ;
Wang, YY ;
Yu, XH ;
Feng, Y .
CHAOS SOLITONS & FRACTALS, 2004, 21 (01) :69-74
[6]   A new chaotic attractor [J].
Liu, CX ;
Liu, T ;
Liu, L ;
Liu, K .
CHAOS SOLITONS & FRACTALS, 2004, 22 (05) :1031-1038
[7]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[8]  
2
[9]   Bridge the gap between the Lorenz system and the Chen system [J].
Lü, JH ;
Chen, GR ;
Cheng, DZ ;
Celikovsky, S .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (12) :2917-2926
[10]  
Tan W, 2004, CHINESE PHYS, V13, P459